Acoustoelectric Amplification in Composite Piezoelectric-Silicon Cavities: A Circuit-Less Amplification Paradigm for RF Signal Processing and Wireless Sensing
复合压电硅腔中的声电放大:用于射频信号处理和无线传感的无电路放大范例
基本信息
- 批准号:1810143
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to introduce a new family of electro-acoustic devices that utilize the coupling between the electrons and phonons in a semiconducting substrate to amplify bulk acoustic waves in a micro-scale piezoelectric-on-silicon acoustic cavity/resonator. Acoustic resonators are used in a wide variety of applications including wireless transceivers and miniaturized sensors, and their significance in facilitating technological innovation is only going to grow for the foreseeable future. For many decades, surface acoustic wave (SAW) devices fabricated on piezoelectric substrates and quartz-based resonators dominated this field. During the past decade, bulk acoustic wave (BAW) devices fabricated based on sputtered thin-film Aluminum Nitride have changed the landscape by extending the application of acoustic devices to higher frequency bands at smaller footprint and lower manufacturing cost. This proposal, if successful, will have a sizable impact on further extending the application of BAW resonators in new fields as the proposed acoustoelectric amplification will offer unmatched overall system-level reduction in cost, size, and power consumption while offering improved overall performance. The principal investigator (PI) has a track record of promoting diversity, particularly through supporting female students to engage in research and working with university-wide programs that are dedicated to promoting research experience for minorities. He is also a co-PI on an NSF-supported research experience for teachers (RET) site. The resources available through this project will directly impact the PI's involvement in all such activities by providing new research/teaching opportunities.The objective of this project is to demonstrate that bulk-mode resonant cavities made of thin composite piezoelectric-silicon substrates such as lithium-niobate (LN)-on-silicon can be a breeding ground for a flurry of devices in which bulk acoustic waves are amplified through application of a DC current, eliminating the need for large actuation areas to achieve low signal loss. The models and preliminary results predict that 50 dB of signal gain is achievable in a 0.2-mm-long LN-on-silicon cavity at GHz frequency range. The magnitude of the achievable gain is limited to the coupling efficiency of the piezoelectric material and the electron mobility in the semiconductor (i.e., silicon) which could be independently optimized in the proposed composite structure. To study this novel concept and explore the performance limit, the following specific tasks are planned: 1) The underlying theory of acoustoelectric amplification in composite structures will be studied in detail, and the design guidelines for optimized gain and power efficiency will be developed. 2) Devices will be designed and fabricated for two specific applications; first, circuit-less oscillators at GHz frequency in which the acoustoelectric amplification compensates for the total acoustic cavity loss in order to achieve sustained spontaneous oscillation; and second, bulk-mode monolithic filters with near-zero insertion loss. 3) Application of circuit-less signal amplification will also be explored in passive wireless piezoelectric resonant sensors to improve their limited resolution and range. The circuit-less signal amplification, if successfully demonstrated, will advance the development of filters to achieve comparable signal-to-noise ratios with much smaller size than existing BAW/SAW filters used in wireless transceivers today.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在介绍一种新的电声器件家族,它利用半导体衬底中电子和声子之间的耦合,在微尺度的硅压电声腔/谐振器中放大体声波。声谐振器应用广泛,包括无线收发机和微型传感器,在可预见的未来,它们在促进技术创新方面的重要性只会越来越大。几十年来,在压电衬底和石英基谐振器上制作的表面声波(SAW)器件一直主导着这一领域。在过去的十年中,基于溅射的薄膜氮化铝制备的体声波(BAW)器件以更小的占地面积和更低的制造成本将声学器件的应用扩展到更高的频段,从而改变了这一格局。这一提议如果成功,将对BAW谐振器在新领域的进一步应用产生相当大的影响,因为拟议的声电放大将在成本、尺寸和功耗方面提供无与伦比的整体系统级降低,同时提高整体性能。首席调查员(PI)有促进多样性的记录,特别是通过支持女学生从事研究和与全大学致力于促进少数群体研究经验的方案合作。他也是NSF支持的教师研究体验(RET)网站的联合PI。通过这个项目可获得的资源将通过提供新的研究/教学机会直接影响PI参与所有这类活动。该项目的目标是证明由薄的复合压电-硅衬底(如硅上的LiNbate(LN))制成的体模谐振腔可以成为一系列器件的温床,在这些器件中,通过施加直流电流来放大体声波,从而消除了实现低信号损失的大致动区域的需要。模型和初步结果预测,在0.2 mm长的LN-on-Silicon腔中,在GHz频率范围内可以获得50d B的信号增益。可获得的增益的大小受限于压电材料的耦合效率和半导体(即硅)中的电子迁移率,这两个因素可以在所提出的复合结构中独立地进行优化。为了研究这一新概念并探索其性能极限,计划开展以下具体工作:1)详细研究复合材料结构中声电放大的基本理论,并制定优化增益和功率效率的设计准则。2)器件的设计和制造将针对两个特定的应用:第一,GHz频率的无电路振荡器,其中声电放大补偿总的声腔损耗,以实现持续的自发振荡;第二,具有近零插入损耗的体模单片滤光器。3)探索无电路信号放大技术在无源无线压电谐振式传感器中的应用,以提高传感器的有限分辨率和测量范围。如果成功演示,无电路信号放大将推动滤波器的开发,以实现与目前无线收发器中使用的现有BAW/SAW滤波器相比小得多的信噪比。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultra-Wideband Non-Reciprocal Micro-Acoustic Delay Lines with Slanted-Finger Interdigital Transducers
具有斜指叉指换能器的超宽带非互易微声学延迟线
- DOI:10.1109/mems51670.2022.9699654
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mansoorzare, Hakhamanesh;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
A Thin-Film Piezo-Silicon Acoustoelectric Isolator with More than 30 dB Non-Reciprocal Transmission
不可逆传输超过 30 dB 的薄膜压电硅声电隔离器
- DOI:10.1109/mems51782.2021.9375272
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mansoorzare, Hakhamanesh;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Acoustoelectric Amplification in Lateral-Extensional Composite Piezo-Silicon Resonant Cavities
横向延伸复合压电硅谐振腔中的声电放大
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mansoorzare, Hakhamanesh;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Acoustoelectric Non-Reciprocity in Lithium Niobate-on-Silicon Delay Lines
- DOI:10.1109/led.2020.3007062
- 发表时间:2020-07
- 期刊:
- 影响因子:4.9
- 作者:Hakhamanesh Mansoorzare;R. Abdolvand
- 通讯作者:Hakhamanesh Mansoorzare;R. Abdolvand
Micromachined Heterostructured Lamb Mode Waveguides for Acoustoelectric Signal Processing
- DOI:10.1109/tmtt.2022.3194723
- 发表时间:2022-11
- 期刊:
- 影响因子:4.3
- 作者:Hakhamanesh Mansoorzare;R. Abdolvand
- 通讯作者:Hakhamanesh Mansoorzare;R. Abdolvand
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Abdolvand其他文献
Fracture limit in thin-film piezoelectric-on-substrate resonators: Silicon VS. diamond
薄膜压电基片谐振器的断裂极限:硅 VS。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Fatemi;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Piezoelectric Micromachined Ultrasonic Transducer Integrated With Field Effect Transistor for Acoustic Sensing
与场效应晶体管集成的压电微机械超声波换能器,用于声学传感
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jennyfer Vivas Gomez;Luke Minks;Hakhamanesh Mansoorzare;Reza Abdolvand;S. Shahraini;Ruth Vidana Morales;Anushka Bhardwaj;Jason Mix;M. Dobre - 通讯作者:
M. Dobre
TEMPERATURE-STABLE THIN-FILM LITHIUM TANTALITE-ON-SILICON RESONATORS
温度稳定的薄膜硅基钽铁矿锂谐振器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yasaman Majd;Hamideh Kermani;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Passive In-Band RF Power Sensing in Thin-Film Lithium Niobate on Silicon Platform
硅平台上薄膜铌酸锂的无源带内射频功率传感
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hakhamanesh Mansoorzare;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Through-support-coupled micromechanical filter array
贯通支撑耦合微机械滤波器阵列
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Ho;Reza Abdolvand;Farrokh Ayazi - 通讯作者:
Farrokh Ayazi
Reza Abdolvand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Abdolvand', 18)}}的其他基金
PFI-TT: Acousto-Electric Semiconductor Amplifiers to Expand Wireless Connectivity to a Larger Population of End-Users
PFI-TT:声电半导体放大器将无线连接扩展到更多的最终用户
- 批准号:
2122670 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Integrating High Frequency Whispering-Gallery-Mode Phononic Cavities with Efficient Electrically-Small Antennas: Pushing the Limits of Wireless Passive Micro-Sensing
将高频耳语廊模式声子腔与高效电小天线集成:突破无线无源微传感的极限
- 批准号:
1711632 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
- 批准号:
1418704 - 财政年份:2014
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
- 批准号:
1440163 - 财政年份:2014
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
- 批准号:
1355488 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
- 批准号:
1202523 - 财政年份:2012
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似海外基金
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Magneto-Optical Organic Semiconductors with Spin Amplification (MOOS)
具有自旋放大功能的磁光有机半导体(MOOS)
- 批准号:
EP/Y002555/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243665 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Hurricane Risk Amplification and Changing North Atlantic Natural Disasters
合作研究:NSFGEO-NERC:飓风风险放大和改变北大西洋自然灾害
- 批准号:
2244918 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Simplified Evaluation for Nonlinear Amplification Characteristics of Surface Layer Using Engineering Geomorphologic Classification
利用工程地貌分类简化地表层非线性放大特性评价
- 批准号:
23K04003 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular basis of auditory signal amplification
听觉信号放大的分子基础
- 批准号:
22KJ0609 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ultrasensitive, Rapid, Amplification-Free RNA Virus Detection Using Nanodimer-Based Nucleic Acid Target Sequence Recognition
使用基于纳米二聚体的核酸靶序列识别进行超灵敏、快速、无扩增的 RNA 病毒检测
- 批准号:
2232940 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243667 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Topological concepts for robust directed amplification
稳健定向扩增的拓扑概念
- 批准号:
2895098 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Studentship
Study on traveling wave amplification in semiconductors
半导体行波放大研究
- 批准号:
23K17322 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)














{{item.name}}会员




