Integrating High Frequency Whispering-Gallery-Mode Phononic Cavities with Efficient Electrically-Small Antennas: Pushing the Limits of Wireless Passive Micro-Sensing
将高频耳语廊模式声子腔与高效电小天线集成:突破无线无源微传感的极限
基本信息
- 批准号:1711632
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to explore and combine novel micro-scale resonator designs with extremely small antennas to build a wireless sensing platform that does not require power sources and takes advantage of the economy scale in delivering exceptional performance at very low price-points. This platform, once realized, is believed to make a significant impact on medical sensing paradigms by offering flexibility in remote and nonintrusive measurement of patients vital signs. Despite the tremendous technological progress made in the field of microelectronics during the past few decades, there exists a gap between the scale of sensing apparatus used in medical industry and the state-of-the-art in the field of miniaturized sensors. Specifically, the devices monitoring respiration rate and breathing pattern are inconvenient for the patients due to excessive wiring. The platform proposed in this project can significantly scale down the size of the equipment required for monitoring breathing rate. The same technology can be adapted for continuous monitoring of the temperature (including the core body temperature), the heart rate, blood pressure, oxygen intake, etc. without the need for changing the battery. The data collection can be achieved by a simple and small gadget that could communicate with smartphones. The principal investigators are participating in the NSF-supported Career Advancement Mentoring Program for Young Entrepreneur and Scholars Program (CAMP-YES) and the Research and Mentoring Activities (RAMA) program at the University of Central Florida, both of which promote research experience for underrepresented undergraduate students. The resources developed in this project will assist the principal investigators in furthering their contributions to these programs by recruiting students to engage in this research. The main objective of this project is to enable extremely-small wireless passive sensors by exploring exceptionally high quality factor (Q) piezoelectric-based high-frequency resonators integrated with ultra-small highly-efficient antennas. In this work, for the first time, whispering-gallery mode phononic cavities in a piezoelectric-on-ultrananocrystalline diamond platform will be demonstrated with the goal of achieving high coupling factor and high quality factor at high frequencies around 1 GHz. The whispering gallery mode is chosen to evade the anchor-loss (a major source of energy loss) and the diamond substrate is chosen to minimize the effect of internal friction losses at high frequencies. Such large values of coupling and Q could enable extremely-small size ( 1 cm x 1 cm including the antenna) wireless sensors with a readout range of a few meters. The tasks include: 1) Studying the physics of loss in high frequency piezoelectric-on-diamond resonators, 2) Implementation of whispering-gallery mode phononic cavities in the thin-film piezoelectric-on-diamond platform, 3) Integration of the phononic cavities with highly-efficient electrically-small antennas to develop passive wireless sensors. Such sensors can be orders of magnitude smaller than other wireless sensors operating at similar frequencies. Successful demonstration of extremely small wireless sensors targeted in this project will have a significant impact on a wide range of remote sensing applications including medical health monitoring and diagnosis, environmental monitoring, and industrial control.
该项目旨在探索和将新颖的微型谐振器设计与极小的天线结合起来,以建立一个无需电源的无线传感平台,并利用经济规模以非常低的价格点提供出色的性能。该平台曾经意识到,据信,通过在患者的远程和非感官测量中提供灵活性,对医学感测范式产生了重大影响。尽管在过去几十年中,微电子学领域取得了巨大的技术进步,但在医疗行业中使用的传感器的规模与微型传感器领域的最先进之间存在差距。具体而言,由于过度接线,监测呼吸率和呼吸模式的设备对于患者而言是不方便的。该项目中提出的平台可以显着缩小监测呼吸速率所需的设备尺寸。可以对相同的技术进行调整,以连续监测温度(包括核心体温),心率,血压,氧气摄入等,而无需更换电池。数据收集可以通过一个可以与智能手机通信的简单小工具来实现。首席研究人员正在参加NSF支持的年轻企业家和学者计划(CAMP-YES)以及中央佛罗里达大学的研究与指导活动(RAMA)计划(RAMA)的职业发展指导计划(RAMA),这两者都促进了代表性不足的本科生的研究经验。该项目中开发的资源将通过招募学生从事这项研究来帮助主要研究人员对这些计划的贡献。 该项目的主要目的是通过探索与超小高效高效天线集成的基于极高的高质量因子(Q)基于压电的高频谐振器来启用极高的无线无源传感器。在这项工作中,首次在压电上的粉丝式粉状型钻石平台中首次在压电上的语音型腔中,以在1 GHz左右的高频下实现高耦合因子和高质量因子的目的。选择了窃窃库模式以逃避锚固损失(主要能量损失),并选择钻石底物以最大程度地减少高频内摩擦损失的影响。如此庞大的耦合和Q值可以使极其小的尺寸(1 cm x 1 cm,包括天线)无线传感器,其读数范围为几米。任务包括:1)研究高频压电在二叉子琴上的损失物理学,2)在薄膜压电启动钻机上的窃窃私语 - 戴上语音模式的窃窃私语模式腔内的实施,3)将声音腔与高效的电气电气型电气安装式安装式无线电传感器相结合。此类传感器的数量级可能比以类似频率运行的其他无线传感器小。成功演示该项目中针对的极小无线传感器将对广泛的遥感应用程序产生重大影响,包括医疗健康监测和诊断,环境监测和工业控制。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Very High-Q Resonant MEMS for Liquid-Phase Bio-Sensing
用于液相生物传感的极高 Q 值谐振 MEMS
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mansoorzare, Hakhamanesh;Moradian, Sina;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Inadequacy of Third-Order Elastic Coefficients for Predicting Nonlinearity in Highly n-Type-Doped Silicon Resonators
三阶弹性系数不足以预测高 n 型掺杂硅谐振器的非线性
- DOI:10.1109/ted.2019.2961946
- 发表时间:2020
- 期刊:
- 影响因子:3.1
- 作者:Khazaeili, Beheshte;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Achieving the Intrinsic Limit of Quality Factor in VHF Extensional-Mode Block Resonators
- DOI:10.1109/fcs.2018.8597472
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Hakhamanesh Mansoorzare;Sina Moradian;S. Shahraini;R. Abdolvand;J. Gonzales
- 通讯作者:Hakhamanesh Mansoorzare;Sina Moradian;S. Shahraini;R. Abdolvand;J. Gonzales
Thickness-Lamé Thin-Film Piezoelectric-on-Silicon Resonators
厚度 Lamé 薄膜压电硅谐振器
- DOI:10.1109/jmems.2020.2972779
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Shahraini, Sarah;Mansoorzare, Hakhamanesh;Mahigir, Amirreza;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Side-Supported Radial-Mode Thin-Film Piezoelectric-on-Silicon Disk Resonators
侧支撑径向模式薄膜硅压电盘谐振器
- DOI:10.1109/tuffc.2019.2893121
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Shahraini, Sarah;Shahmohammadi, Mohsen;Fatemi, Hedy;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Abdolvand其他文献
Fracture limit in thin-film piezoelectric-on-substrate resonators: Silicon VS. diamond
薄膜压电基片谐振器的断裂极限:硅 VS。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Fatemi;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Piezoelectric Micromachined Ultrasonic Transducer Integrated With Field Effect Transistor for Acoustic Sensing
与场效应晶体管集成的压电微机械超声波换能器,用于声学传感
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jennyfer Vivas Gomez;Luke Minks;Hakhamanesh Mansoorzare;Reza Abdolvand;S. Shahraini;Ruth Vidana Morales;Anushka Bhardwaj;Jason Mix;M. Dobre - 通讯作者:
M. Dobre
TEMPERATURE-STABLE THIN-FILM LITHIUM TANTALITE-ON-SILICON RESONATORS
温度稳定的薄膜硅基钽铁矿锂谐振器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yasaman Majd;Hamideh Kermani;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Passive In-Band RF Power Sensing in Thin-Film Lithium Niobate on Silicon Platform
硅平台上薄膜铌酸锂的无源带内射频功率传感
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hakhamanesh Mansoorzare;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Through-support-coupled micromechanical filter array
贯通支撑耦合微机械滤波器阵列
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Ho;Reza Abdolvand;Farrokh Ayazi - 通讯作者:
Farrokh Ayazi
Reza Abdolvand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Abdolvand', 18)}}的其他基金
PFI-TT: Acousto-Electric Semiconductor Amplifiers to Expand Wireless Connectivity to a Larger Population of End-Users
PFI-TT:声电半导体放大器将无线连接扩展到更多的最终用户
- 批准号:
2122670 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Acoustoelectric Amplification in Composite Piezoelectric-Silicon Cavities: A Circuit-Less Amplification Paradigm for RF Signal Processing and Wireless Sensing
复合压电硅腔中的声电放大:用于射频信号处理和无线传感的无电路放大范例
- 批准号:
1810143 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
- 批准号:
1418704 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
- 批准号:
1440163 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
- 批准号:
1355488 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
- 批准号:
1202523 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
基于频率选择表面的电磁波角度选择性研究
- 批准号:62361008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
- 批准号:52377074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
背根神经节特异性传导针刺频率信号的神经环路研究
- 批准号:82305050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非平稳条件下多变量洪水频率分析方法研究-以淮河流域为例
- 批准号:42301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理引导的机器学习求解频率域声波正反问题研究
- 批准号:42374141
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Fellowship
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant