Integrating High Frequency Whispering-Gallery-Mode Phononic Cavities with Efficient Electrically-Small Antennas: Pushing the Limits of Wireless Passive Micro-Sensing
将高频耳语廊模式声子腔与高效电小天线集成:突破无线无源微传感的极限
基本信息
- 批准号:1711632
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to explore and combine novel micro-scale resonator designs with extremely small antennas to build a wireless sensing platform that does not require power sources and takes advantage of the economy scale in delivering exceptional performance at very low price-points. This platform, once realized, is believed to make a significant impact on medical sensing paradigms by offering flexibility in remote and nonintrusive measurement of patients vital signs. Despite the tremendous technological progress made in the field of microelectronics during the past few decades, there exists a gap between the scale of sensing apparatus used in medical industry and the state-of-the-art in the field of miniaturized sensors. Specifically, the devices monitoring respiration rate and breathing pattern are inconvenient for the patients due to excessive wiring. The platform proposed in this project can significantly scale down the size of the equipment required for monitoring breathing rate. The same technology can be adapted for continuous monitoring of the temperature (including the core body temperature), the heart rate, blood pressure, oxygen intake, etc. without the need for changing the battery. The data collection can be achieved by a simple and small gadget that could communicate with smartphones. The principal investigators are participating in the NSF-supported Career Advancement Mentoring Program for Young Entrepreneur and Scholars Program (CAMP-YES) and the Research and Mentoring Activities (RAMA) program at the University of Central Florida, both of which promote research experience for underrepresented undergraduate students. The resources developed in this project will assist the principal investigators in furthering their contributions to these programs by recruiting students to engage in this research. The main objective of this project is to enable extremely-small wireless passive sensors by exploring exceptionally high quality factor (Q) piezoelectric-based high-frequency resonators integrated with ultra-small highly-efficient antennas. In this work, for the first time, whispering-gallery mode phononic cavities in a piezoelectric-on-ultrananocrystalline diamond platform will be demonstrated with the goal of achieving high coupling factor and high quality factor at high frequencies around 1 GHz. The whispering gallery mode is chosen to evade the anchor-loss (a major source of energy loss) and the diamond substrate is chosen to minimize the effect of internal friction losses at high frequencies. Such large values of coupling and Q could enable extremely-small size ( 1 cm x 1 cm including the antenna) wireless sensors with a readout range of a few meters. The tasks include: 1) Studying the physics of loss in high frequency piezoelectric-on-diamond resonators, 2) Implementation of whispering-gallery mode phononic cavities in the thin-film piezoelectric-on-diamond platform, 3) Integration of the phononic cavities with highly-efficient electrically-small antennas to develop passive wireless sensors. Such sensors can be orders of magnitude smaller than other wireless sensors operating at similar frequencies. Successful demonstration of extremely small wireless sensors targeted in this project will have a significant impact on a wide range of remote sensing applications including medical health monitoring and diagnosis, environmental monitoring, and industrial control.
该项目旨在探索并结合新颖的微尺度谐振器设计和极小的天线,以建立一个不需要电源的无线传感平台,并利用经济规模以极低的价格提供卓越的性能。该平台一旦实现,将通过提供远程和非侵入性测量患者生命体征的灵活性,对医学传感范式产生重大影响。尽管在过去的几十年里微电子领域取得了巨大的技术进步,但医疗工业中使用的传感设备的规模与微型传感器领域的最新技术之间存在差距。具体来说,监测呼吸频率和呼吸模式的设备由于布线过多,给患者带来了不便。本项目提出的平台可以显著缩小监测呼吸速率所需设备的尺寸。同样的技术可以用于连续监测温度(包括核心体温)、心率、血压、摄氧量等,而无需更换电池。数据收集可以通过一个简单而小巧的装置来实现,这个装置可以与智能手机通信。主要研究人员参加了美国国家科学基金会支持的青年企业家和学者职业发展指导计划(CAMP-YES)和中佛罗里达大学的研究和指导活动(RAMA)计划,这两个计划都促进了代表性不足的本科生的研究经验。本项目开发的资源将通过招募学生参与本研究,帮助主要研究人员进一步为这些项目做出贡献。该项目的主要目标是通过探索与超小型高效天线集成的高质量因数(Q)压电高频谐振器,实现极小的无线无源传感器。在这项工作中,将首次展示压电超晶金刚石平台中的低语通道模式声子腔,目标是在1ghz左右的高频下实现高耦合因子和高质量因子。选择耳语廊模式以避免锚损失(能量损失的主要来源),选择金刚石衬底以尽量减少高频内摩擦损失的影响。如此大的耦合和Q值可以实现极小尺寸(1厘米x 1厘米,包括天线)的无线传感器,其读数范围为几米。研究工作包括:1)研究高频金刚石压电谐振器损耗的物理特性;2)在薄膜金刚石压电平台上实现低语通道模式声子腔;3)将声子腔与高效电小天线集成开发无源无线传感器。这种传感器可以比在类似频率下工作的其他无线传感器小几个数量级。该项目所针对的极小无线传感器的成功演示将对广泛的遥感应用产生重大影响,包括医疗健康监测和诊断、环境监测和工业控制。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Very High-Q Resonant MEMS for Liquid-Phase Bio-Sensing
用于液相生物传感的极高 Q 值谐振 MEMS
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mansoorzare, Hakhamanesh;Moradian, Sina;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Temperature Coefficient of Frequency in Silicon-Based Cross-Sectional Quasi Lam e; Mode Resonators
硅基截面准拉姆的频率温度系数;
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:S. Shahraini;R. Abdolvand;Hedy Fatemi
- 通讯作者:Hedy Fatemi
Inadequacy of Third-Order Elastic Coefficients for Predicting Nonlinearity in Highly n-Type-Doped Silicon Resonators
三阶弹性系数不足以预测高 n 型掺杂硅谐振器的非线性
- DOI:10.1109/ted.2019.2961946
- 发表时间:2020
- 期刊:
- 影响因子:3.1
- 作者:Khazaeili, Beheshte;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
Achieving the Intrinsic Limit of Quality Factor in VHF Extensional-Mode Block Resonators
- DOI:10.1109/fcs.2018.8597472
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Hakhamanesh Mansoorzare;Sina Moradian;S. Shahraini;R. Abdolvand;J. Gonzales
- 通讯作者:Hakhamanesh Mansoorzare;Sina Moradian;S. Shahraini;R. Abdolvand;J. Gonzales
Thickness-Lamé Thin-Film Piezoelectric-on-Silicon Resonators
厚度 Lamé 薄膜压电硅谐振器
- DOI:10.1109/jmems.2020.2972779
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Shahraini, Sarah;Mansoorzare, Hakhamanesh;Mahigir, Amirreza;Abdolvand, Reza
- 通讯作者:Abdolvand, Reza
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Abdolvand其他文献
Fracture limit in thin-film piezoelectric-on-substrate resonators: Silicon VS. diamond
薄膜压电基片谐振器的断裂极限:硅 VS。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Fatemi;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Piezoelectric Micromachined Ultrasonic Transducer Integrated With Field Effect Transistor for Acoustic Sensing
与场效应晶体管集成的压电微机械超声波换能器,用于声学传感
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jennyfer Vivas Gomez;Luke Minks;Hakhamanesh Mansoorzare;Reza Abdolvand;S. Shahraini;Ruth Vidana Morales;Anushka Bhardwaj;Jason Mix;M. Dobre - 通讯作者:
M. Dobre
TEMPERATURE-STABLE THIN-FILM LITHIUM TANTALITE-ON-SILICON RESONATORS
温度稳定的薄膜硅基钽铁矿锂谐振器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yasaman Majd;Hamideh Kermani;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Passive In-Band RF Power Sensing in Thin-Film Lithium Niobate on Silicon Platform
硅平台上薄膜铌酸锂的无源带内射频功率传感
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hakhamanesh Mansoorzare;Reza Abdolvand - 通讯作者:
Reza Abdolvand
Through-support-coupled micromechanical filter array
贯通支撑耦合微机械滤波器阵列
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Ho;Reza Abdolvand;Farrokh Ayazi - 通讯作者:
Farrokh Ayazi
Reza Abdolvand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Abdolvand', 18)}}的其他基金
PFI-TT: Acousto-Electric Semiconductor Amplifiers to Expand Wireless Connectivity to a Larger Population of End-Users
PFI-TT:声电半导体放大器将无线连接扩展到更多的最终用户
- 批准号:
2122670 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Acoustoelectric Amplification in Composite Piezoelectric-Silicon Cavities: A Circuit-Less Amplification Paradigm for RF Signal Processing and Wireless Sensing
复合压电硅腔中的声电放大:用于射频信号处理和无线传感的无电路放大范例
- 批准号:
1810143 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
- 批准号:
1418704 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
- 批准号:
1440163 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
- 批准号:
1355488 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
- 批准号:
1202523 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Fellowship
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
PopHorn: A deployable folding horn antenna for low frequency space-based applications
PopHorn:适用于低频天基应用的可展开折叠喇叭天线
- 批准号:
ST/Y509942/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
ERI: Biological Effects of Low-Frequency, Low-Intensity Ultrasound on Endothelial Cell and Macrophage Co-Culture
ERI:低频、低强度超声对内皮细胞和巨噬细胞共培养的生物学效应
- 批准号:
2347558 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
High Frequency Channel for CHAI
CHAI 高频通道
- 批准号:
530175728 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Major Research Instrumentation
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
- 批准号:
10089417 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Collaborative R&D