Network-Based Discovery of Brassinosteroid Regulation of Plant Growth and Stress Responses in Arabidopsis
基于网络的油菜素类固醇调节拟南芥植物生长和应激反应的发现
基本信息
- 批准号:1818160
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant steroid hormones called Brassinosteroids (BRs) signal to regulate plant growth, development and response environmental stresses. However, our understanding of how this steroid hormone controls thousands of genes to regulate these processes is incomplete. The project will generate and use multiple large-scale datasets to model how genes are controlled to govern BR-regulated growth and drought responses. BR pathways are well conserved among Arabidopsis and crop plants such as maize, rice and other crops, so the knowledge obtained from the proposed studies can be used to design strategies to optimize plant growth and crop production under drought conditions. Moreover, the project provides excellent training opportunities for graduate students and postdoctoral associates in modern plant biology. The investigators will also achieve societally relevant outcomes by providing training opportunities to underrepresented undergraduates through the George Washington Carver Internship program as well as engaging high school and community college teachers via summer internships. Through this partnership with teachers a learning module on BR-regulation of plant growth will be developed for high-school and community college students. Furthermore, unpublished data from the proposed studies will be incorporated into an upper level undergraduate course on functional genomics, systems, and network biology, freeing students to generate their own hypotheses during a group project rather than simply reproducing published work. Finally, the investigators will provide resources to the research community by organizing a workshop on plant phenomics, proteomics and computational modeling approaches and by making the data generated publicly accessible through publications and the Principal Investigator's laboratory website.Molecular genetic studies in Arabidopsis have greatly advanced our understanding of the BR signaling pathway. BRs signal to regulate BES1/BZR1 family transcription factors (TFs), hundreds of BR-Related Transcription Factors (BR-TFs) and thousands of target genes. Although numerous BR-TFs have been identified, the transcriptional complexes that allow BES1/BZR1 and these BR-TFs to regulate the large number of BR-responsive genes have not been characterized. In addition, modeling of BR networks has proven to be a powerful approach to understand how BES1 directs a network controlling thousands of BR responsive genes. However, previously constructed BR networks have only considered transcription, overlooking important regulation at the post-transcriptional and post-translational level. The project will use an integrated genetics, genomics, and proteomics approach to establish and experimentally test a comprehensive Arabidopsis Gene Regulatory Network (GRN) governing BR-regulated growth and drought responses. By combining cutting-edge proteomics with advanced predictive modeling the project will generate a comprehensive view of BR-mediated transcriptional regulation and allow for the identification of novel factors involved in BR responses. First, investigators will uncover the components and functions of BR transcription factor complexes by examining the role of two novel BR-TFs. These two BR-TFs interact with BES1, a master regulator of the BR pathway, as well as a large number of other BR-TFs, likely forming large transcriptional complexes to control the expression of BR target genes. Second, investigators will generate BR transcriptome, proteome, and phosphoproteome datasets that are a prerequisite for a novel approach pioneered by the Co-Principal Investigator to construct GRNs based on these combined omics data. These combined networks have increased predictive ability compared to networks based only on transcriptional data and will provide a vital resource, allowing for a more complete understanding of the transcriptional program through which BRs control plant growth and stress responses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物甾体激素是一类调节植物生长发育和响应环境胁迫的信号物质。然而,我们对这种类固醇激素如何控制数千个基因来调节这些过程的理解是不完整的。该项目将生成并使用多个大规模数据集来模拟基因是如何被控制来管理BR调节的生长和干旱反应的。BR途径在拟南芥和作物如玉米、水稻和其他作物中很好地保守,因此从拟议的研究中获得的知识可用于设计策略以优化干旱条件下的植物生长和作物产量。此外,该项目为现代植物生物学的研究生和博士后提供了极好的培训机会。调查人员还将通过乔治华盛顿卡弗实习计划为代表性不足的本科生提供培训机会,以及通过暑期实习吸引高中和社区大学教师,从而实现与社会相关的成果。通过与教师的这种伙伴关系,将为高中和社区大学的学生开发一个关于BR调节植物生长的学习模块。此外,来自拟议研究的未发表数据将被纳入功能基因组学,系统和网络生物学的高级本科课程,使学生能够在小组项目中产生自己的假设,而不是简单地复制已发表的工作。最后,研究人员将通过组织一个关于植物表型组学、蛋白质组学和计算建模方法的研讨会,并通过出版物和首席研究员实验室网站公开获得所产生的数据,为研究界提供资源。拟南芥的分子遗传学研究极大地促进了我们对BR信号通路的理解。BR信号调节BES 1/BZR 1家族转录因子(TF)、数百种BR相关转录因子(BR-TF)和数千种靶基因。虽然已经鉴定了许多BR-TF,但是允许BES 1/BZR 1和这些BR-TF调节大量BR应答基因的转录复合物尚未被表征。此外,BR网络的建模已被证明是了解BES 1如何指导控制数千个BR响应基因的网络的有力方法。然而,以前构建的BR网络只考虑了转录,忽略了重要的调控在转录后和翻译后水平。该项目将使用整合的遗传学,基因组学和蛋白质组学方法来建立和实验测试一个全面的拟南芥基因调控网络(GRN)管理BR调节的生长和干旱反应。通过将尖端的蛋白质组学与先进的预测建模相结合,该项目将产生BR介导的转录调控的全面视图,并允许识别参与BR反应的新因子。首先,研究人员将通过研究两种新型BR-TF的作用来揭示BR转录因子复合物的组成和功能。这两种BR-TF与BR途径的主调节因子BES 1以及大量其他BR-TF相互作用,可能形成大的转录复合物以控制BR靶基因的表达。其次,研究人员将生成BR转录组,蛋白质组和磷酸化蛋白质组数据集,这是联合主要研究者开创的基于这些组合组学数据构建GRNs的新方法的先决条件。与仅基于转录数据的网络相比,这些组合网络提高了预测能力,并将提供重要的资源,使人们能够更全面地了解BR控制植物生长和胁迫反应的转录程序。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root.
- DOI:10.1126/science.adf4721
- 发表时间:2023-03-31
- 期刊:
- 影响因子:56.9
- 作者:Nolan, Trevor M.;Vukasinovic, Nemanja;Hsu, Che-Wei;Zhang, Jingyuan;Vanhoutte, Isabelle;Shahan, Rachel;Taylor, Isaiah W.;Greenstreet, Laura;Heitz, Matthieu;Afanassiev, Anton;Wang, Ping;Szekely, Pablo;Brosnan, Aiden;Yin, Yanhai;Schiebinger, Geoffrey;Ohler, Uwe;Russinova, Eugenia;Benfey, Philip N.
- 通讯作者:Benfey, Philip N.
Redesigning green revolution trait with increased grain yield and nitrogen utilization efficiency by reducing brassinosteroid signaling in semidwarf wheat
- DOI:10.1007/s11427-023-2401-3
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Hongqing Guo;Yanhai Yin
- 通讯作者:Hongqing Guo;Yanhai Yin
Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses
干旱机器人检测 (RoAD):油菜素类固醇和干旱反应的自动表型分析系统
- DOI:10.1111/tpj.15401
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xiang, Lirong;Nolan, Trevor M.;Bao, Yin;Elmore, Mitch;Tuel, Taylor;Gai, Jingyao;Shah, Dylan;Wang, Ping;Huser, Nicole M.;Hurd, Ashley M.
- 通讯作者:Hurd, Ashley M.
The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis
- DOI:10.1105/tpc.18.00918
- 发表时间:2019-08-01
- 期刊:
- 影响因子:11.6
- 作者:Xie, Zhouli;Nolan, Trevor;Yin, Yanhai
- 通讯作者:Yin, Yanhai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanhai Yin其他文献
Automated microfluidic plant chips-based plant phenotyping system
基于自动化微流控植物芯片的植物表型分析系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Huawei Jiang;Xinran Wang;Trevor M. Nolan;Yanhai Yin;M. Aluru;L. Dong - 通讯作者:
L. Dong
Transcription factors involved in brassinosteroid repressed gene expression and their regulation by BIN2 kinase
参与油菜素类固醇抑制基因表达的转录因子及其 BIN2 激酶的调节
- DOI:
10.4161/psb.27849 - 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Dawei Zhang;H. Ye;Hongqing Guo;A. Johnson;Honghui Lin;Yanhai Yin - 通讯作者:
Yanhai Yin
15 – RECOMBINANT PROTEIN EXPRESSION IN PLANTS
15 – 植物中的重组蛋白表达
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
A. Voloudakis;Yanhai Yin;N. Beachy - 通讯作者:
N. Beachy
Fertile plants regenerated from suspension culture-derived protoplasts of an indica type rice (Oryza sativa L.)
- DOI:
10.1007/bf00040117 - 发表时间:
1993-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Yanhai Yin;Shizhong Li;Yiming Chen;Hongqing Guo;Wenzhong Tian;Ying Chen;Liangcai Li - 通讯作者:
Liangcai Li
AP2/ERF transcription factors and their functions in emArabidopsis/em responses to abiotic stresses
AP2/ERF 转录因子及其在拟南芥对非生物胁迫响应中的功能
- DOI:
10.1016/j.envexpbot.2024.105763 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:4.700
- 作者:
Kai Wang;Hongqing Guo;Yanhai Yin - 通讯作者:
Yanhai Yin
Yanhai Yin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanhai Yin', 18)}}的其他基金
Meeting Proposal: 3rd International Brassinosteroid Conference, Aug 1-4, 2018, San Diego, CA, USA
会议提案:第三届国际油菜素类固醇会议,2018年8月1-4日,美国加利福尼亚州圣地亚哥
- 批准号:
1840826 - 财政年份:2018
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Signaling Network for Brassinosteroid-Regulated Gene Expression in Arabidopsis
拟南芥油菜素类固醇调节基因表达的信号网络
- 批准号:
1257631 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Mechanisms of Plant Steroid Hormone Regulated Gene Expression in Arabidopsis
拟南芥植物类固醇激素调控基因表达的机制
- 批准号:
1122166 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Novel Signaling Components For Plant Steroid Regulated Gene Expression in Arabidopsis
职业:拟南芥中植物类固醇调节基因表达的新型信号成分
- 批准号:
0546503 - 财政年份:2006
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334028 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334027 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Activity-based regulome profiling for the discovery of covalent transcription factor inhibitors
基于活性的调节组分析用于发现共价转录因子抑制剂
- 批准号:
10603503 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Cancer-based discovery of novel mechanisms of chromatin control
基于癌症的染色质控制新机制的发现
- 批准号:
10660680 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
- 批准号:
2239175 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
- 批准号:
2323696 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Study on knowledge discovery methods based on matrix factorization
基于矩阵分解的知识发现方法研究
- 批准号:
23K11229 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)