RAISE-TAQS: Symmetry Protected Quantum Bits through Fluxon Pairing
RAISE-TAQS:通过 Fluxon 配对保护对称性的量子比特
基本信息
- 批准号:1838979
- 负责人:
- 金额:$ 99.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description: With the current pace of quantum technology development, the realization of a superconducting quantum computer is fast approaching. Quantum computers offer the possibility for exponential speedup in computation in comparison to classical computers on some of the hardest problems relevant to humanity today. Over the past decade, the performance of the elements of a quantum computer, the quantum bit (qubit) has improved tremendously. Despite this progress in performance, it has been shown that there is still a long way to go in improving qubit performance to realize a practical quantum computer. The goal of this project is to design, fabricate, and characterize a new class of fault-tolerant logical qubits for a quantum computer decoupled from the environment and protected from local noises. The logical qubit is based on incorporating error correction at the hardware level utilizing nontrivial symmetries and engineering quantum mechanical interactions in the circuit which makes up the qubit. This research project contributes to a better understanding of how certain quantum interactions which have typically not been exploited in quantum computers can be utilized to improve qubit performance and scalability. The educational outreach portion of this project addresses the need to train future quantum electronics engineers for positions which are currently in high demand in the quantum technologies industry encompassing both tech industry giants and a quantum startup ecosystem. Such activities encompass the introduction of a series of short courses on introductory quantum information sciences targeted at physics and electrical engineering students early on in their careers, exposing them to opportunities in the ever-expanding quantum technology industry.Technical description: The project investigates transformative ideas of realizing highly coherent qubits through symmetry-protection of a quantum state encoded in the parity of fluxons in a superconducting loop. The proposed qubit provides a Hamiltonian realization of an error correction code where the ground states of the Hamiltonian can be regarded as the logical basis states. The realization of a full-fledged topologically protected quantum state in a circuit has been elusive primarily because alternative approaches have required elements not found in the conventional superconducting circuit toolbox. This project utilizes two newly developed circuit elements, the charge-based quantum interference device and a superinductor, to realize a protected fluxon-pairing quantum circuit, a cos(phi/2) Josephson element whose lowest-energy states are different by the parity of fluxons in a superconducting loop. It is expected that such a circuit could be decoupled from local noises and demonstrate very long coherence in the protected state. The objectives of this project are: (1) to develop a highly coherent fluxon-pairing qubit by first enhancing the Aharonov-Casher interference through symmetry improvements in the design of the qubit; (2) to further develop superinductor technology; (3) to demonstrate protection against energy relaxation and de-coherence in the protected state of the fluxon-pairing qubit; (4) to demonstrate fast adiabatic switching between the protected and unprotected states for state preparation and measurement operations; and (5) to demonstrate fault-tolerant single and two-qubit gate operations on the sub-microsecond time scale. The project also supports the education of graduate students who enjoy broad exposure to the state-of-the-art tools of modern quantum information research. The multi-component educational and outreach component, an essential part of the project, is designed to develop a program to train future quantum electronics engineers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:随着当前量子技术发展的步伐,超导量子计算机的实现正在快速接近。与经典计算机相比,量子计算机在一些与当今人类相关的最难解决的问题上提供了指数级加速计算的可能性。在过去的十年里,量子计算机的元素--量子比特(Qubit)--的性能有了巨大的提高。尽管在性能上取得了这些进展,但已经表明,要提高量子比特的性能以实现实用的量子计算机,还有很长的路要走。本项目的目标是为量子计算机设计、制造和表征一类新的容错逻辑量子比特,使其与环境解耦,并防止局部噪声。逻辑量子比特的基础是利用非平凡的对称性在硬件层面进行纠错,并在组成量子比特的电路中设计量子力学相互作用。这一研究项目有助于更好地理解如何利用某些通常在量子计算机中没有被利用的量子相互作用来提高量子比特的性能和可扩展性。该项目的教育推广部分旨在满足培养未来量子电子工程师的需求,这些工程师目前在量子技术行业需求很高,包括科技行业巨头和量子创业生态系统。这些活动包括介绍一系列针对早期物理和电气工程专业学生的量子信息科学入门短期课程,使他们在不断扩大的量子技术行业中获得机会。技术说明:该项目研究通过保护超导回路中通量子奇偶编码的量子态来实现高度相干量子比特的变革性想法。所提出的量子比特提供了纠错码的哈密顿实现,其中哈密顿量的基态可以被视为逻辑基态。在电路中实现完全的拓扑保护量子态一直是难以捉摸的,主要是因为替代方法需要传统超导电路工具箱中没有的元素。该项目利用两个新开发的电路元件,基于电荷的量子干涉器件和超导电感,实现了受保护的磁通配对量子电路,即CoS(Phi/2)约瑟夫森元件,其最低能态因超导回路中的磁通奇偶而不同。预计这样的电路可以与本地噪声解耦,并在受保护状态下表现出很长的相干性。该项目的目标是:(1)通过首先通过改进量子比特设计的对称性来增强Aharonov-Casher干涉,从而开发出高度相干的通量对量子比特;(2)进一步发展超导技术;(3)展示对通量对量子比特受保护状态的防止能量松弛和去相干的保护;(4)演示在状态准备和测量操作中在受保护状态和未受保护状态之间的快速绝热切换;以及(5)在亚微秒尺度上演示容错的单量子比特门操作和双量子比特门操作。该项目还支持研究生的教育,他们广泛接触到现代量子信息研究的最先进工具。这个由多个组成部分组成的教育和推广部分是该项目的重要组成部分,旨在开发一个培养未来量子电子工程师的计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase Diffusion in Low-EJ Josephson Junctions at Milli-Kelvin Temperatures
- DOI:10.3390/electronics12020416
- 发表时间:2023-01-01
- 期刊:
- 影响因子:2.9
- 作者:Lu, Wen-Sen;Kalashnikov, Konstantin;Gershenson, Michael E.
- 通讯作者:Gershenson, Michael E.
Granular Aluminum Meandered Superinductors for Quantum Circuits
- DOI:10.1103/physrevapplied.13.054051
- 发表时间:2020-05-20
- 期刊:
- 影响因子:4.6
- 作者:Kamenov, Plamen;Lu, Wen-Sen;Gershenson, Michael E.
- 通讯作者:Gershenson, Michael E.
Bifluxon: Fluxon-Parity-Protected Superconducting Qubit
- DOI:10.1103/prxquantum.1.010307
- 发表时间:2020-09-03
- 期刊:
- 影响因子:9.7
- 作者:Kalashnikov, Konstantin;Hsieh, Wen Ting;Bell, Matthew
- 通讯作者:Bell, Matthew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Bell其他文献
LONG-TERM IMPACT OF ARTIFICIAL INTELLIGENCE ON COLORECTAL ADENOMA DETECTION IN A SAFETY-NET HOSPITAL: A ONE-YEAR FOLLOW-UP
- DOI:
10.1016/j.gie.2024.04.703 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Kenneth Chow;Matthew Bell;Nicholas Cumpian;Maryanne Amour;Ryan Hsu;Viktor Eysselein;Neetika Srivastava;M. Fleischman;Sofiya Reicher - 通讯作者:
Sofiya Reicher
Mo1130: CHARACTERISING MONONUCLEAR MYELOID CELLS AND PROFILING THE EFFECTS OF BET INHIBITORS IN BIOLOGICS NON-RESPONDING CROHN'S DISEASE PATIENTS
- DOI:
10.1016/s0016-5085(22)61663-9 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Ahmed Elfiky;Ishtu Hageman;Marte Becker;Andrew Y. Li Yim;Jan Verhoeff;Vincent W. Joustra;Manon Wildenberg;Theodorus B. Hakvoort;Juan J. Garcia-Vallejo;Geert D'Haens;Christianne J. Buskens;Rebecca Furze;Pal Mander;Matthew Bell;Wouter J. De Jonge - 通讯作者:
Wouter J. De Jonge
A Modern Integration of Cognitive and Computer Sciences
认知科学与计算机科学的现代整合
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
G. S. Bahr;Matthew Bell;Jason Metz;Sarah Sowle;Elizabeth Beasley - 通讯作者:
Elizabeth Beasley
73. Detection of methane eructation peaks in dairy cows using signal processing
- DOI:
10.1016/j.anscip.2021.03.074 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:
- 作者:
Ali Hardan;Matthew Bell;Phil Garnsworthy - 通讯作者:
Phil Garnsworthy
Sa1584 OUTCOMES OF LIVER TRANSPLANTATION IN PATIENTS WITH ACUTE ON CHRONIC LIVER FAILURE: A SYSTEMATIC REVIEW AND METAANALYSIS
- DOI:
10.1016/s0016-5085(20)34009-9 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Mohamed Abdallah;Muhammad Waleed;Matthew Bell;Morgan Nelson;Ashwani K. Singal - 通讯作者:
Ashwani K. Singal
Matthew Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Bell', 18)}}的其他基金
EAGER: MAKER: Nano-Makerspace to Make and Explore in the World of the Small
EAGER:MAKER:在小世界中进行创造和探索的纳米创客空间
- 批准号:
1723511 - 财政年份:2017
- 资助金额:
$ 99.18万 - 项目类别:
Standard Grant
Broadband Quantum limited Traveling-Wave Parametric Amplifier based on a Superconducting Metamaterial Transmission Line
基于超导超材料传输线的宽带量子受限行波参量放大器
- 批准号:
1608448 - 财政年份:2016
- 资助金额:
$ 99.18万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 99.18万 - 项目类别:
Standard Grant














{{item.name}}会员




