RAISE-TAQS: Nonlinear Optical Properties and Novel Quantum Phases of Polar Molecules in Optical Lattic
RAISE-TAQS:光学晶格中极性分子的非线性光学性质和新颖的量子相
基本信息
- 批准号:1839153
- 负责人:
- 金额:$ 99.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Developing novel molecular materials relies on the ability to synthesize the constituents (molecules) and assemble them under carefully controlled conditions. The physical properties are determined by parameters like the molecular spacing, degree of order, and orientation. These parameters are typically fixed by self-assembly into the equilibrium crystal state and can only be changed by synthesizing a new batch of materials. This award supports research to use optical trapping methods to prepare molecular assemblies where these parameters can be tuned by external fields. This capability will permit the study of basic properties of solid-state materials in a cheaper, more flexible way. Polar molecules will be trapped in optical lattices, mimicking the molecular arrangement and properties of a solid crystal, and be oriented using external electric fields. Such a lattice configuration renders systematic tuning and exploration of relevant properties of solids feasible. Furthermore, this approach has the potential to explore novel quantum phenomena, like collective optical response, in such systems. In the future, this research has the potential to inform the synthesis of real molecular materials, from molecular crystals to nanocrystal assemblies to metal-organic frameworks. It provides a new approach to "crystal engineering" by combining advances in Physics, Chemistry and Materials Science. The project's broader impacts include student training in various areas, including lasers, vacuum technology and optical setups, as well as providing a broader, interdisciplinary research experience than typically accessible. Finally, regular visits to K-12 schools to present experimental demonstrations and lectures on trapping and manipulating particles, e.g. molecules or ions, will be part of this research effort.The main objective of this project is to load a quantum degenerate gas of polar AlCl molecules into an optical lattice to study novel quantum phases and simulate solid-state crystalline materials. This research has four specific goals: First, perform precision measurements of molecular properties, such as the energy spectrum and the Franck-Condon factors of AlCl; Second, cool the polar AlCl molecules to quantum degeneracy and study the dynamics and stability of dipolar Bose-Einstein condensates. The group will also explore correlated phases due to the anisotropic dipole-dipole interaction, including liquid crystal and density-wave phases, and probe the interplay between superfluidity and charge-ordering in low-dimensional materials; Third, create a one-dimensional optical lattice of polar molecules and study its non-linear optical response by measuring the second harmonic generation. By varying temperature and ordering, the optical lattice can be tuned from the limit of independent, noninteracting molecules to a strongly correlated one-dimensional crystal; Fourth, use Raman scattering to explore the transition from intramolecular vibrations of noninteracting molecules to intermolecular phonon structure by continuously tuning the lattice parameters. The experiments will demonstrate that ordered structures of diatomic molecules can exhibit phenomena that are directly relevant to solid-state materials. These results will motivate future experiments to expand the lattice to two dimensions and finally to fully mimic three-dimensional crystal systems. Their low temperature and tunable structure could lead to totally new phenomena, like giant nonlinear optical susceptibilities, that could inspire new research directions in the field of "crystal engineering".This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
开发新的分子材料依赖于合成组分(分子)并在仔细控制的条件下组装它们的能力。物理性质由分子间距、有序度和取向等参数决定。这些参数通常通过自组装到平衡晶体状态而固定,并且只能通过合成一批新材料来改变。该奖项支持使用光学捕获方法制备分子组装体的研究,这些参数可以通过外部场进行调整。这种能力将允许以更便宜,更灵活的方式研究固态材料的基本特性。极性分子将被捕获在光学晶格中,模仿固体晶体的分子排列和性质,并使用外部电场进行定向。这样的晶格结构使得对固体的相关性质的系统调整和探索变得可行。此外,这种方法有可能探索新的量子现象,如集体光学响应,在这样的系统。在未来,这项研究有可能为真实的分子材料的合成提供信息,从分子晶体到聚合物组装体再到金属有机框架。它结合了物理学、化学和材料科学的进展,为“晶体工程”提供了一种新的方法。该项目更广泛的影响包括在各个领域的学生培训,包括激光,真空技术和光学设置,以及提供比通常访问更广泛的跨学科研究经验。最后,定期访问K-12学校,展示捕获和操纵粒子(如分子或离子)的实验演示和讲座,将是该研究工作的一部分。该项目的主要目标是将极性AlCl分子的量子简并气体加载到光学晶格中,以研究新的量子相并模拟固态晶体材料。本研究有四个具体目标:第一,对AlCl分子的能谱和Franck-Condon因子等分子性质进行精确测量;第二,将极性AlCl分子冷却到量子简并状态,研究偶极玻色-爱因斯坦凝聚体的动力学和稳定性。该小组还将探索由于各向异性偶极-偶极相互作用引起的相关相,包括液晶和密度波相,并探索低维材料中超流性和电荷有序之间的相互作用;第三,创建极性分子的一维光学晶格,并通过测量二次谐波产生来研究其非线性光学响应。通过改变温度和有序度,可以将光学晶格从独立的、非相互作用的分子的极限调谐到强相关的一维晶体;第四,通过连续地调谐晶格参数,使用拉曼散射来探索从非相互作用的分子的分子内振动到分子间声子结构的转变。这些实验将证明,双原子分子的有序结构可以表现出与固态材料直接相关的现象。这些结果将激励未来的实验将晶格扩展到二维,并最终完全模拟三维晶体系统。他们的低温和可调结构可能会导致全新的现象,如巨大的非线性光学折射率,这可能会激发“晶体工程”领域的新研究方向。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Early-time behavior of quantum subharmonic generation
量子次谐波产生的早期行为
- DOI:10.1103/physreva.103.043518
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Choi, Yunjin;Hemmerling, Boerge;Tsai, Shan-Wen;Mills, Allen P.
- 通讯作者:Mills, Allen P.
Effect of mediated interactions on a Hubbard chain in mixed-dimensional fermionic cold atoms
混合维费米子冷原子中哈伯德链介导相互作用的影响
- DOI:10.1103/physrevresearch.2.033054
- 发表时间:2020
- 期刊:
- 影响因子:4.2
- 作者:Okamoto, Junichi;Huang, Wen-Min;Irwin, Kyle;Campbell, David K.;Tsai, Shan-Wen
- 通讯作者:Tsai, Shan-Wen
Truncation effects in the charge representation of the O(2) model
O(2) 模型的电荷表示中的截断效应
- DOI:10.1103/physrevb.103.245137
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Zhang, Jin;Meurice, Y.;Tsai, S.-W.
- 通讯作者:Tsai, S.-W.
Analytical approximation of the second-harmonic conversion efficiency
二次谐波转换效率的解析近似
- DOI:10.1364/ao.404993
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Daniel, John R.;Tsai, Shan-Wen;Hemmerling, Boerge
- 通讯作者:Hemmerling, Boerge
Stroboscopic aliasing in long-range interacting quantum systems
- DOI:10.21468/scipostphyscore.4.3.021
- 发表时间:2020-11
- 期刊:
- 影响因子:3.6
- 作者:S. Kelly;E. Timmermans;J. Marino;S. Tsai
- 通讯作者:S. Kelly;E. Timmermans;J. Marino;S. Tsai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boerge Hemmerling其他文献
Boerge Hemmerling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boerge Hemmerling', 18)}}的其他基金
CAREER: Laser-Cooled Molecules in an AC-Storage Ring
职业:交流存储环中的激光冷却分子
- 批准号:
2145147 - 财政年份:2022
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 99.92万 - 项目类别:
Standard Grant