NeuroDataRR: Predicting intelligence from resting-state fMRI: parcellation, pipelines and models
NeuroDataRR:通过静息态 fMRI 预测智力:分区、管道和模型
基本信息
- 批准号:1840756
- 负责人:
- 金额:$ 57.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Individual differences in cognitive abilities ultimately derive from differences in brain function. Recent studies have been able to predict, to some degree, individual differences in intelligence from the connectivity pattern among brain regions obtained at rest with functional magnetic resonance imaging (rs-fMRI). However, it remains unclear how reliable these findings are, how well they replicate, and to what extent they generalize to other samples. These questions have also limited our understand of what it is in the neuroimaging data that drives these predictions; for example, are there specific brain regions, or specific ways that the data are processed that make a difference? To address these questions this project will begin with a successful initial finding, predicting intelligence from rs-fMRI with a particular approach, in a large data set (the Human Connectome Project data, HCP). Building from this initial finding, a series of research aims will then investigate how different kinds of analyses might yield different results, how statistically reliable the findings are, how well they replicate, and how they generalize to databases other than the HCP. These findings will be high methodological value to all scientists working in this field and will also yield initial answers to important questions regarding the neural basis of intelligence. All work will use open-science practices including but not limited to pre-registration and data sharing of data and software.This project capitalizes on recent success in predicting general intelligence (g) from resting-state fMRI (rs-fMRI) data in the Human Connectome Project dataset (HCP). Its principal aims are to investigate the reliability, reproducibility, and generalizability of this finding. A first aim will quantify the effect of brain alignment, rs-fMRI denoising, brain parcellation, and model-learning strategy on the prediction of intelligence from rs-fMRI in the HCP. The aim will quantify how choices at key intersections in this processing decision tree affect final prediction results. This investigation will provide a valuable inventory of possible processing pipelines, and the difference that different parameter choices make; aim to yield a single "best" combination of analytical choices; and explore which anatomical brain regions, and networks, can best predict intelligence. A second aim will add graph-theoretical summary features and externally driven brain states to improve the prediction of intelligence in the HCP. Do features derived from rs- or task-fMRI yield substantially better predictions? Do models built separately from each paradigm, and for different tasks, point to shared anatomical regions? Combining features from both paradigms, what is the best prediction we can obtain? To investigate the generalizability of results obtained, the results will be replicated across three independent datasets: the Enhanced Nathan Kline Institute - Rockland Sample (NKI-RS; target 1000 participants, 6-85 year-olds), the NIH Adolescent Brain Cognitive Development dataset (ABCD; target 10,000 participants, 9-10 year-olds), and the Cambridge Center for Ageing and Neuroscience (Cam-CAN; 700 participants, 18-88 year-olds). These pre-registered studies will quantify how robust are the brain predictors of intelligence (to different subject samples, and different MRI acquisition methods).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
认知能力的个体差异最终源于大脑功能的差异。 最近的研究已经能够预测,在一定程度上,从大脑区域之间的连接模式,在休息与功能磁共振成像(rs-fMRI)的个体差异的智力。 然而,目前还不清楚这些发现的可靠性如何,它们的复制效果如何,以及它们在多大程度上推广到其他样本。 这些问题也限制了我们对神经成像数据中驱动这些预测的内容的理解;例如,是否存在特定的大脑区域,或者数据处理的特定方式? 为了解决这些问题,该项目将开始与一个成功的初步发现,预测智力从rs-fMRI与特定的方法,在一个大的数据集(人类连接组计划数据,HCP)。 在这一初步发现的基础上,一系列的研究目标将研究不同类型的分析如何产生不同的结果,这些发现在统计上的可靠性如何,它们的重复性如何,以及它们如何推广到HCP以外的数据库。 这些发现将对所有从事这一领域工作的科学家具有很高的方法论价值,也将对有关智力神经基础的重要问题提供初步答案。所有工作将使用开放科学的做法,包括但不限于预注册和数据共享的数据和software.This项目利用最近成功预测一般智力(g)从静息态功能磁共振成像(rs-fMRI)数据在人类连接组项目数据集(HCP)。 其主要目的是调查这一发现的可靠性、可重复性和可推广性。第一个目标是量化大脑对齐,rs-fMRI去噪,大脑分割和模型学习策略对HCP中rs-fMRI智能预测的影响。 该目标将量化该处理决策树中关键交叉点的选择如何影响最终的预测结果。这项研究将提供一个有价值的清单,可能的处理管道,不同的参数选择的差异,旨在产生一个单一的“最佳”组合的分析选择,并探索哪些解剖大脑区域,和网络,可以最好地预测智力。 第二个目标将增加图形理论的总结功能和外部驱动的大脑状态,以提高对HCP的智力预测。 从rs-或task-fMRI得到的特征是否能产生更好的预测?从每个范例中单独构建的模型,以及针对不同任务的模型,是否指向共享的解剖区域?结合这两种范式的特征,我们能得到的最佳预测是什么? 为了研究所得结果的普遍性,将在三个独立的数据集上复制结果:增强型Nathan Kline研究所-罗克兰样本(NKI-RS;目标1000名参与者,6 - 85岁),NIH青少年大脑认知发展数据集(ABCD;目标10,000名参与者,9 - 10岁)和剑桥老龄化和神经科学中心(Cam-CAN; 700名参与者,18 - 88岁)。这些预先注册的研究将量化大脑预测智力的可靠性(针对不同的受试者样本和不同的MRI采集方法)。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
No strong evidence that social network index is associated with gray matter volume from a data-driven investigation.
- DOI:10.1016/j.cortex.2020.01.021
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Lin C;Keles U;Tyszka JM;Gallo M;Paul L;Adolphs R
- 通讯作者:Adolphs R
Intrinsic Functional Connectivity of the Brain in Adults with a Single Cerebral Hemisphere
- DOI:10.1016/j.celrep.2019.10.067
- 发表时间:2019-11-19
- 期刊:
- 影响因子:8.8
- 作者:Kliemann, Dorit;Adolphs, Ralph;Paul, Lynn K.
- 通讯作者:Paul, Lynn K.
Personality beyond taxonomy
超越分类的人格
- DOI:10.1038/s41562-020-00989-3
- 发表时间:2020
- 期刊:
- 影响因子:29.9
- 作者:Dubois, Julien;Eberhardt, Frederick;Paul, Lynn K.;Adolphs, Ralph
- 通讯作者:Adolphs, Ralph
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Adolphs其他文献
医学研究者の責務としての追加的ケア:部分委託モデルの概要と課題
额外护理是医学研究人员的责任:部分承包模式的概述和挑战
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ryuta Aoki;Taisuke Imai;Shunsuke Suzuki;Keise Izuma;Yukihito Yomogida;Kazuki Iijima;Ralph Adolphs;Colin F Camerer;Kiyoshi Nakahara;Kenji Matsumoto;川島京子;永田靖;二階堂善弘;林芳紀 - 通讯作者:
林芳紀
伝世文献から見た楚簡における「喪」と「亡」について
从历史文献看《初见》中的“丧”与“死”
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ryuta Aoki;Taisuke Imai;Shunsuke Suzuki;Keise Izuma;Yukihito Yomogida;Kazuki Iijima;Ralph Adolphs;Colin F Camerer;Kiyoshi Nakahara;Kenji Matsumoto;川島京子;永田靖;二階堂善弘;林芳紀;加納和雄(李学竹との共著);高橋博巳;高橋 悟;松田純;中野毅;島薗進;Kawashima Kyoko;建畠晢;神山伸弘;大西克也 - 通讯作者:
大西克也
契丹仏教史の研究
契丹佛教史研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ryuta Aoki;Taisuke Imai;Shunsuke Suzuki;Keise Izuma;Yukihito Yomogida;Kazuki Iijima;Ralph Adolphs;Colin F Camerer;Kiyoshi Nakahara;Kenji Matsumoto;川島京子;永田靖;二階堂善弘;林芳紀;加納和雄(李学竹との共著);高橋博巳;高橋 悟;松田純;中野毅;島薗進;Kawashima Kyoko;建畠晢;神山伸弘;大西克也;Kazuo KANO;立花幸司;永田靖;Hidetake YANO;Koji Ota;藤原崇人 - 通讯作者:
藤原崇人
Neuro-representational accounts for process-dependent fairness decisions
神经表征解释了依赖于过程的公平决策
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
青木隆太;今井泰祐;鈴木真介;出馬圭世;蓬田幸人;飯島和樹;Ralph Adolphs;Colin F. Camerer;中原潔;松元健二 - 通讯作者:
松元健二
How the brain codes social equality in the number of choice options
大脑如何通过选择的数量来编码社会平等
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Aoki;R.;Matsumoto;M.;Ybmogida;Y.;Izuma;K.;Murayama;K.;Sugiura;A.;Camerer;C. F.;Ralph Adolphs;R.;& Matsumoto;K.;Aoki R - 通讯作者:
Aoki R
Ralph Adolphs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Adolphs', 18)}}的其他基金
NCS-FO: Using fMRI to revise psychological variables
NCS-FO:使用功能磁共振成像来修正心理变量
- 批准号:
1845958 - 财政年份:2018
- 资助金额:
$ 57.9万 - 项目类别:
Standard Grant
MRI-R2: Acquisition for High-Performance Imaging of the Human Brain
MRI-R2:人脑高性能成像采集
- 批准号:
0959140 - 财政年份:2010
- 资助金额:
$ 57.9万 - 项目类别:
Standard Grant
An Interdisciplinary Study of the Role of the Consciousness on Decision-making
意识对决策作用的跨学科研究
- 批准号:
0926544 - 财政年份:2009
- 资助金额:
$ 57.9万 - 项目类别:
Standard Grant
MRI: Acquisition for High-resolution magnetic resonance imaging of the primate brain
MRI:采集灵长类大脑的高分辨率磁共振成像
- 批准号:
0922982 - 财政年份:2009
- 资助金额:
$ 57.9万 - 项目类别:
Standard Grant
Collaborative Research: The Measurement and Neural Foundations of Strategic IQ
合作研究:战略智商的测量和神经基础
- 批准号:
0432862 - 财政年份:2004
- 资助金额:
$ 57.9万 - 项目类别:
Standard Grant
相似海外基金
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Novel non-invasive approach for predicting retinopathy of prematurity in premature neonates
预测早产儿视网膜病变的新型非侵入性方法
- 批准号:
10665438 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Exploring, Predicting, and Intervening on Long-term Viral suppression Electronically (EPI-LoVE)
电子方式探索、预测和干预长期病毒抑制 (EPI-LoVE)
- 批准号:
10676683 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Predicting ECMO NeuroLogICal Injuries using mAchiNe Learning (PELICAN)
使用机器学习预测 ECMO 神经损伤 (PELICAN)
- 批准号:
10719312 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Dissecting and Predicting Lethal Prostate Cancer using Biologically Informed Artificial Intelligence
使用生物学信息人工智能剖析和预测致命性前列腺癌
- 批准号:
10628274 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Predicting medication usage for autistic children using machine learning
使用机器学习预测自闭症儿童的药物使用情况
- 批准号:
491342 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Operating Grants
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
- 批准号:
481139 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Operating Grants
Predicting Tissue and Functional Outcome in Acute Stroke
预测急性中风的组织和功能结果
- 批准号:
10568740 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Predicting Metastatic Progression of High Risk Localized Prostate Cancer
预测高风险局限性前列腺癌的转移进展
- 批准号:
10684561 - 财政年份:2023
- 资助金额:
$ 57.9万 - 项目类别:
Predicting risk of systemic autoimmune disease in patients with positive antinuclear antibodies
预测抗核抗体阳性患者患全身性自身免疫性疾病的风险
- 批准号:
10410841 - 财政年份:2022
- 资助金额:
$ 57.9万 - 项目类别: