CAREER: Uncertainty-Aware and Data-Driven Methods for Electronic and Photonic Design Automation
职业:电子和光子设计自动化的不确定性感知和数据驱动方法
基本信息
- 批准号:1846476
- 负责人:
- 金额:$ 51.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Designing complex engineering systems such as self-driving cars, electronic and photonic integrated circuits, requires design automation software to complete many challenging tasks that are impossible or too time-consuming if done manually. In practice, almost all engineering designs are subject to such unavoidable uncertainties as noise, fabrication process variations and insufficient knowledge about external environments. These uncertainties often cause performance degradations, system failures and sometimes fatal accidents. However, existing design automation software requires massive data samples from time-consuming computer simulations or non-trivial measurement when uncertainties are involved. This project uses electronic and photonic integrated circuits as driving examples, and will develop novel design automation algorithms to improve the performance and reliability under various uncertainties. The education components of this project include creating two graduate courses of uncertainty and data analysis, training future workforce through undergraduate and graduate research. The outreach education and training through the awardee institution and through academic conferences will enable technology and knowledge transfer to a broad community. Although this project targets on applications in electronics and photonics, the developed algorithms and theory will be applicable to many other domains such as autonomous driving, renewable energy systems, and medical imaging. Since uncertainty-aware photonic design automation is still at its early stage, this project will enable a new field of important research. The resulting algorithms and tools will support the foreseeable large-scale photonic integration which will boost the performance of future computing and communication systems. The technical goal of this project is to develop novel uncertainty-aware electronic and photonic design automation algorithms that require only a small data set and a very low computational cost in the design flow. This project will span three research topics: uncertainty-aware simulation, optimization and data-driven variation modeling. Firstly, novel algorithms will be developed to address several long-standing challenges in the forward uncertainty quantification of electronic and photonic circuits, such as the coupled impact of fundamentally different types of uncertainties and long-term probabilistic simulation errors. Secondly, leveraging the developed forward uncertainty simulator, this project will further develop ultra-fast optimization tools to improve the yield of electronic and photonic circuits. The main focus will be investigating large-scale "non-sampling" stochastic optimization algorithms. The developed algorithms will enable rigorous yield optimization with "small" simulation data sets and thus significantly reduce the software runtime on a computer. Finally, rigorous statistical estimation algorithms will be developed to calibrate critical device model parameters and to extract statistical variability distributions based on limited and noisy indirect circuit-level measurement data. The designed algorithms and prototyping software will be validated by practical design cases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计复杂的工程系统,如自动驾驶汽车、电子和光子集成电路,需要设计自动化软件来完成许多具有挑战性的任务,这些任务如果手动完成是不可能的或过于耗时的。在实践中,几乎所有的工程设计都受到不可避免的不确定性,如噪音,制造工艺变化和对外部环境的了解不足。这些不确定性往往会导致性能下降,系统故障,有时甚至是致命的事故。然而,现有的设计自动化软件需要大量的数据样本,从耗时的计算机模拟或非平凡的测量时,涉及的不确定性。该项目以电子和光子集成电路为例,开发新颖的设计自动化算法,以提高各种不确定性下的性能和可靠性。该项目的教育部分包括创建两个不确定性和数据分析的研究生课程,通过本科和研究生研究培训未来的劳动力。通过获奖机构和学术会议开展的外联教育和培训将使技术和知识能够向广大社区转让。虽然该项目的目标是电子和光子学的应用,但开发的算法和理论将适用于许多其他领域,如自动驾驶,可再生能源系统和医学成像。由于不确定性感知的光子设计自动化仍处于早期阶段,该项目将成为一个新的重要研究领域。由此产生的算法和工具将支持可预见的大规模光子集成,这将提高未来计算和通信系统的性能。 该项目的技术目标是开发新的不确定性感知电子和光子设计自动化算法,在设计流程中只需要很小的数据集和非常低的计算成本。 该项目将涵盖三个研究主题:不确定性感知仿真,优化和数据驱动的变化建模。首先,将开发新的算法来解决电子和光子电路的前向不确定性量化中的几个长期存在的挑战,例如根本不同类型的不确定性和长期概率仿真误差的耦合影响。其次,利用已开发的前向不确定性模拟器,该项目将进一步开发超快速优化工具,以提高电子和光子电路的成品率。主要重点将是研究大规模的“非抽样”随机优化算法。所开发的算法将使严格的产量优化与“小”的模拟数据集,从而显着减少计算机上的软件运行时间。最后,将开发严格的统计估计算法,以校准关键器件模型参数,并根据有限和嘈杂的间接电路级测量数据提取统计变异性分布。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributionally Robust Circuit Design Optimization under Variation Shifts
- DOI:10.1109/iccad57390.2023.10323948
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Yifan Pan;Zichang He;Nanlin Guo;Zheng Zhang
- 通讯作者:Yifan Pan;Zichang He;Nanlin Guo;Zheng Zhang
Recent Advancements of Uncertainty Quantification with Non-Gaussian Correlated Process Variations: Invited Special Session Paper
非高斯相关过程变化的不确定性量化的最新进展:特邀特别会议论文
- DOI:10.1109/nemo.2019.8853732
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Cui, Chunfeng;Zhang, Zheng
- 通讯作者:Zhang, Zheng
Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs
- DOI:10.1109/qcs54837.2021.00007
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Danylo Lykov;Angela Chen;Huaxuan Chen;Kristopher Keipert;Zheng Zhang;Tom Gibbs;Y. Alexeev
- 通讯作者:Danylo Lykov;Angela Chen;Huaxuan Chen;Kristopher Keipert;Zheng Zhang;Tom Gibbs;Y. Alexeev
Prediction of Multidimensional Spatial Variation Data via Bayesian Tensor Completion
- DOI:10.1109/tcad.2019.2891987
- 发表时间:2019-01
- 期刊:
- 影响因子:2.9
- 作者:Jiali Luan;Zheng Zhang
- 通讯作者:Jiali Luan;Zheng Zhang
Progress of Tensor-Based High-Dimensional Uncertainty Quantification of Process Variations
基于张量的过程变化高维不确定性量化研究进展
- DOI:10.1109/aces53325.2021.00020
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:He, Zichang;Zhang, Zheng
- 通讯作者:Zhang, Zheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Zhang其他文献
DNA immobilization and SAW response in ZnO nanotips grown on LiNbO3 substrates.
LiNbO3 基底上生长的 ZnO 纳米尖端的 DNA 固定和 SAW 响应。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Zheng Zhang;N. Emanetoglu;G. Saraf;Yimin Chen;P. Wu;J. Zhong;Yicheng Lu;Jingqiu Chen;O. Mirochnitchenko;M. Inouye - 通讯作者:
M. Inouye
Leader-following scaled consensus of second-order multi-agent systems under directed topologies
有向拓扑下二阶多智能体系统的领导者跟随规模共识
- DOI:
10.1080/00207721.2019.1672115 - 发表时间:
2019 - 期刊:
- 影响因子:4.3
- 作者:
Zheng Zhang;Shiming Chen;Yuanshi Zheng - 通讯作者:
Yuanshi Zheng
Increased PD-1/STAT1 ratio may account for the survival benefit in decitabine therapy for lower risk myelodysplastic syndrome
PD-1/STAT1 比率增加可能是地西他滨治疗低风险骨髓增生异常综合征患者生存获益的原因
- DOI:
10.1080/10428194.2016.1219903 - 发表时间:
2017-04 - 期刊:
- 影响因子:0
- 作者:
Zheng Zhang;Chunkang Chang - 通讯作者:
Chunkang Chang
The Early Cretaceous structural features and its influence on hydrocarbon accumulation in the southern Hurenbuqi depression, Erlian Basin
二连盆地呼仁布其凹陷南部早白垩世构造特征及其对油气成藏的影响
- DOI:
10.1016/j.uncres.2023.08.003 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Qiang Xu;Jianfeng Cheng;Yue Zhao;Q. Miao;Zheng Zhang;Xiujia Bai;Li Tian;Shan Ren - 通讯作者:
Shan Ren
Diagnosis and ORF gene sequencing analysis of the nervous necrosis virus (NNV) isolated from cultured pearl gentian grouper, Epinephelus lanceolatus × Epinephelus fuscoguttatus, in China
中国养殖珍珠龙胆石斑鱼×斑纹石斑鱼神经坏死病毒(NNV)的诊断及ORF基因测序分析
- DOI:
10.1109/bmei.2014.7002884 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Rongrong Ma;Yingeng Wang;M. Liao;Xian;Zheng Zhang;X. Rong;Bin Li - 通讯作者:
Bin Li
Zheng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng Zhang', 18)}}的其他基金
SHF: Small: Tackling Mapping and Scheduling Problems for Quantum Program Compilation
SHF:小型:解决量子程序编译的映射和调度问题
- 批准号:
2129872 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
- 批准号:
2107321 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Continuing Grant
SHF:Small: Tensor-Based Algorithm and Hardware Co-Optimization for Neural Network Architecture
SHF:Small:基于张量的神经网络架构算法和硬件协同优化
- 批准号:
1817037 - 财政年份:2018
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
XPS: EXPL: Cache Management for Data Parallel Architecture
XPS:EXPL:数据并行架构的缓存管理
- 批准号:
1628401 - 财政年份:2016
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
SHF: Small: Optimizing Compiler and Runtime for Concurrency-Oriented Execution Model
SHF:小型:优化面向并发的执行模型的编译器和运行时
- 批准号:
1421505 - 财政年份:2014
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Uncertainty-aware sensing and management for IoT
职业:物联网的不确定性感知传感和管理
- 批准号:
2340049 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Continuing Grant
Cross-Layer Uncertainty-Aware Reinforcement Learning for Safe Autonomous Driving
用于安全自动驾驶的跨层不确定性感知强化学习
- 批准号:
EP/Y002644/1 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
Research Grant
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:
10090795 - 财政年份:2024
- 资助金额:
$ 51.03万 - 项目类别:
EU-Funded
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2318758 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2348046 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Standard Grant
Uncertainty-aware full-body motion planning of aerial and multi-legged robots for urban search and rescue operations
用于城市搜救行动的空中和多足机器人的不确定性全身运动规划
- 批准号:
560791-2020 - 财政年份:2022
- 资助金额:
$ 51.03万 - 项目类别:
Alliance Grants
Dependable Predictive Inference with Uncertainty-Aware Machine Learning
通过不确定性感知机器学习进行可靠的预测推理
- 批准号:
2210637 - 财政年份:2022
- 资助金额:
$ 51.03万 - 项目类别:
Continuing Grant
Uncertainty Quantification for Probabilistic Stability Analysis and Uncertainty-Aware Control of Electric Power Systems
电力系统概率稳定性分析和不确定性感知控制的不确定性量化
- 批准号:
RGPIN-2022-03236 - 财政年份:2022
- 资助金额:
$ 51.03万 - 项目类别:
Discovery Grants Program - Individual
III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
- 批准号:
2107449 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Continuing Grant