CAREER: Signal Recovery from Generative Priors
职业:从生成先验中恢复信号
基本信息
- 批准号:1848087
- 负责人:
- 金额:$ 43.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent progress in artificial intelligence and machine learning has led to exceptional performance in tasks involving understanding what objects are in digital images. These developments enable a new class of algorithms for Magnetic Resonance Imaging, astronomical imaging, microscopy, and imaging based on X-ray diffractions. These new algorithms have the potential to drastically reduce the time and expense of scientific and medical data collection for the purpose of imaging. For example, using these techniques, MRI machines could increase in efficiency, allowing shorter scan times and shorter waits for medical care. Additionally, these new techniques can accelerate the process of drug discovery and development by minimizing the cost of imaging of molecules. While some new algorithms have recently appeared, theoretical understanding of them is currently minimal. This is a serious concern as technology, upon which professionals make scientific discoveries and medical diagnoses, should be reliable in common and novel situations. The investigator and his colleagues introduce novel approaches for recovering images, scientific and medical, that succeed while needing less data than earlier methods. Additionally, the investigator and his colleagues provide mathematical justification for why such imaging methods recover a sufficiently high-quality image. Graduate students are engaged in the research of the project.The investigator and his colleagues develop a rigorous recovery theory for multiple signal recovery problems in the context of generative neural network priors. These problems are linear compressed sensing, phase retrieval, and blind deconvolution. In each, the recovery problem is phrased as a nonconvex optimization under the constraint that the desired signal belongs to the range of a pre-trained generative model given by an artificial neural network. For each problem, the investigator and his colleagues provide (1) computationally efficient, specific numerical algorithms with convergence guarantees that (2) operate at optimal sample complexity with respect to the dimensionality of the modeled manifold of natural signals, and (3) apply to realistic neural network architectures. The impact of this work follows from two ideas: (1) generative priors learned from data may provide lower-dimensional representations than sparsity priors in many contexts; and (2) generative priors may be easier to exploit than sparsity priors in nonlinear inverse problems such as phase retrieval. Graduate students are engaged in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能和机器学习的最新进展使人们在理解数字图像中的对象的任务中表现出色。 这些发展使一类新的算法,磁共振成像,天文成像,显微镜和成像的基础上X射线衍射。 这些新算法有可能大大减少用于成像目的的科学和医学数据收集的时间和费用。 例如,使用这些技术,MRI机器可以提高效率,允许更短的扫描时间和更短的医疗等待。 此外,这些新技术可以通过最小化分子成像的成本来加速药物发现和开发的过程。 虽然最近出现了一些新的算法,但目前对它们的理论理解很少。 这是一个严重的问题,因为专业人员进行科学发现和医学诊断所依赖的技术在常见和新的情况下应该是可靠的。 研究人员和他的同事们介绍了用于恢复图像的新方法,科学和医学,成功的同时需要比以前的方法更少的数据。 此外,研究人员和他的同事还为为什么这种成像方法可以恢复足够高质量的图像提供了数学依据。 研究生正在从事该项目的研究,研究员和他的同事们在生成神经网络先验的背景下,针对多信号恢复问题发展了严格的恢复理论。 这些问题是线性压缩传感,相位恢复和盲反卷积。 在每一个中,恢复问题被描述为在所需信号属于由人工神经网络给出的预训练生成模型的范围的约束下的非凸优化。 对于每个问题,研究者和他的同事提供了(1)计算效率高,具有收敛保证的特定数值算法,(2)相对于自然信号建模流形的维度,以最佳样本复杂度运行,(3)适用于现实的神经网络架构。 这项工作的影响来自两个想法:(1)在许多情况下,从数据中学习的生成先验可以提供比稀疏先验更低维的表示;(2)在相位检索等非线性逆问题中,生成先验可能比稀疏先验更容易利用。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BranchHull: Convex bilinear inversion from the entrywise product of signals with known signs
- DOI:10.1016/j.acha.2019.03.002
- 发表时间:2020-09-01
- 期刊:
- 影响因子:2.5
- 作者:Aghasi, Alireza;Ahmed, Ali;Joshi, Babhru
- 通讯作者:Joshi, Babhru
Regularized Training of Intermediate Layers for Generative Models for Inverse Problems
- DOI:10.48550/arxiv.2203.04382
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Sean Gunn;Jorio Cocola;Paul Hand
- 通讯作者:Sean Gunn;Jorio Cocola;Paul Hand
Nonasymptotic Guarantees for Spiked Matrix Recovery with Generative Priors
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Jorio Cocola;Paul Hand;V. Voroninski
- 通讯作者:Jorio Cocola;Paul Hand;V. Voroninski
Bilinear Compressed Sensing Under Known Signs via Convex Programming
- DOI:10.1109/tsp.2020.3017929
- 发表时间:2019-06
- 期刊:
- 影响因子:5.4
- 作者:A. Aghasi;Ali Ahmed;Paul Hand;Babhru Joshi
- 通讯作者:A. Aghasi;Ali Ahmed;Paul Hand;Babhru Joshi
Invertible generative models for inverse problems: mitigating representation error and dataset bias
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Muhammad Asim;Ali Ahmed;Paul Hand
- 通讯作者:Muhammad Asim;Ali Ahmed;Paul Hand
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hand其他文献
Simultaneous Phase Retrieval and Blind Deconvolution via Convex Programming
通过凸规划进行同步相位检索和盲反卷积
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:6
- 作者:
Ali Ahmed;A. Aghasi;Paul Hand - 通讯作者:
Paul Hand
PhaseLift is robust to a constant fraction of arbitrary errors
- DOI:
10.1016/j.acha.2016.01.001 - 发表时间:
2015-02 - 期刊:
- 影响因子:2.5
- 作者:
Paul Hand - 通讯作者:
Paul Hand
ShapeFit: Exact Location Recovery from Corrupted Pairwise Directions
ShapeFit:从损坏的成对方向中恢复精确位置
- DOI:
10.1002/cpa.21727 - 发表时间:
2015 - 期刊:
- 影响因子:3
- 作者:
Paul Hand;Choongbum Lee;V. Voroninski - 通讯作者:
V. Voroninski
Analysis of Catastrophic Forgetting for Random Orthogonal Transformation Tasks in the Overparameterized Regime
超参数化机制中随机正交变换任务的灾难性遗忘分析
- DOI:
10.48550/arxiv.2207.06475 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Daniel Goldfarb;Paul Hand - 通讯作者:
Paul Hand
Photoperiod effect on bud burst in Prunus is phase dependent: significance for early photosynthetic development.
光周期对李属芽萌发的影响是相位依赖性的:对早期光合作用发育具有重要意义。
- DOI:
10.1093/treephys/16.5.491 - 发表时间:
1996 - 期刊:
- 影响因子:4
- 作者:
R. Besford;Paul Hand;Christine M. Richardson;S. D. Peppitt - 通讯作者:
S. D. Peppitt
Paul Hand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Hand', 18)}}的其他基金
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
- 批准号:
2053448 - 财政年份:2021
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Foundations of Data Science Institute
数据科学研究所基础
- 批准号:
2022205 - 财政年份:2020
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
A Systems Approach to Disease Resistance Against Necrotrophic Fungal Pathogens
针对坏死性真菌病原体的抗病系统方法
- 批准号:
BB/M017729/1 - 财政年份:2015
- 资助金额:
$ 43.5万 - 项目类别:
Research Grant
Sparse Principal Component Analysis via the Sparsest Element in a Subspace
通过子空间中最稀疏元素的稀疏主成分分析
- 批准号:
1418971 - 财政年份:2014
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Sparse Principal Component Analysis via the Sparsest Element in a Subspace
通过子空间中最稀疏元素的稀疏主成分分析
- 批准号:
1464525 - 财政年份:2014
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Accelerated breeding of black rot resistant brassicas for the benefit of east African smallholders
加速培育抗黑腐病芸苔属植物,造福东非小农
- 批准号:
BB/F004338/2 - 财政年份:2010
- 资助金额:
$ 43.5万 - 项目类别:
Research Grant
Bacterial and plant factors that influence adhesion of enterohaemorrhagic E. coli and Salmonella enterica to salad leaves
影响肠出血性大肠杆菌和沙门氏菌对沙拉叶粘附的细菌和植物因素
- 批准号:
BB/G014175/2 - 财政年份:2010
- 资助金额:
$ 43.5万 - 项目类别:
Research Grant
Bacterial and plant factors that influence adhesion of enterohaemorrhagic E. coli and Salmonella enterica to salad leaves
影响肠出血性大肠杆菌和沙门氏菌对沙拉叶粘附的细菌和植物因素
- 批准号:
BB/G014175/1 - 财政年份:2009
- 资助金额:
$ 43.5万 - 项目类别:
Research Grant
Accelerated breeding of black rot resistant brassicas for the benefit of east African smallholders
加速培育抗黑腐病芸苔属植物,造福东非小农
- 批准号:
BB/F004338/1 - 财政年份:2008
- 资助金额:
$ 43.5万 - 项目类别:
Research Grant
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Signal Recovery Beyond Minimization: A Monotone Inclusion Framework
CIF:小:超越最小化的信号恢复:单调包含框架
- 批准号:
2211123 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
CIF: Small: Robust Signal Recovery and Grant-Free Access for Massive IoT Connectivity
CIF:小型:强大的信号恢复和无授权访问大规模物联网连接
- 批准号:
2009001 - 财政年份:2020
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Fast and Robust Algorithms for Signal Recovery from Underdetermined Measurements: Generalized Sparse Fourier Transforms, Inverse Problems, and Density Estimation
用于从欠定测量中恢复信号的快速稳健算法:广义稀疏傅里叶变换、反演问题和密度估计
- 批准号:
1912706 - 财政年份:2019
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Iterative Signal Recovery Algorithms --- A Unified View of Turbo and Message-Passing Approaches
迭代信号恢复算法——Turbo 和消息传递方法的统一视图
- 批准号:
404179757 - 财政年份:2018
- 资助金额:
$ 43.5万 - 项目类别:
Priority Programmes
Speech signal recovery using an optimized multi-channel adaptive noise canceller based on bone- and air-conducted measurements
使用基于骨导和气导测量的优化多通道自适应噪声消除器恢复语音信号
- 批准号:
18K04175 - 财政年份:2018
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CBMS Conference: Sparse Approximation and Signal Recovery Algorithms
CBMS 会议:稀疏逼近和信号恢复算法
- 批准号:
1642586 - 财政年份:2017
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
CIF: Small: The Interplay Between Convex Feasibility Problems and Minimization Problems in Signal Recovery
CIF:小:信号恢复中凸可行性问题和最小化问题之间的相互作用
- 批准号:
1715671 - 财政年份:2017
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
CIF: Medium: Signal representation, sampling and recovery on graphs
CIF:中:图形上的信号表示、采样和恢复
- 批准号:
1563918 - 财政年份:2016
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
A study of stochastic hierarchical convex optimization algorithms and their applications to signal recovery
随机分层凸优化算法及其在信号恢复中的应用研究
- 批准号:
15H06197 - 财政年份:2015
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Timing Recovery for Orthogonal Frequency Division Multiple Access (OFDMA) Upstream Cable Signal
正交频分多址 (OFDMA) 上行电缆信号的定时恢复
- 批准号:
453660-2013 - 财政年份:2015
- 资助金额:
$ 43.5万 - 项目类别:
Industrial Postgraduate Scholarships














{{item.name}}会员




