Local Atomic and Electronic Structure
局部原子和电子结构
基本信息
- 批准号:238346794
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project funCOS 1 aims at investigating molecular adsorption, self-assembly and covalent network formation on oxide surfaces at the atomic scale. For that it employs low-temperature Scanning Tunneling Microscopy and non-contact Atomic Force Microscopy in ultra-high vacuum.Molecules from the funCOS molecular toolbox will be deposited on CoO, Co3O4, and MgO surfaces and their adsorption behavior and self-assembly will be studied at the atomic scale. FunCOS 1 will further develop the steering of molecular self-assembly by the choice of molecular side-groups and by activating intermolecular binding schemes that are not yet investigated on oxides. The hydrogen bonding between carboxyl and amino groups, halogen bonding and the formation metal-coordinated networks on oxide surfaces is of prime interest. The thermal stability of the functional groups and metal adatoms on oxides will be investigated.Related to the activation of functional groups are other modifications of the molecule-substrate interaction introduced by on-surface reactions of the molecules. A prominent example is the self-self-metalation of free-base porphyrins found on MgO and CoO during the first funCOS funding period. There are hints that hydrogen released during self-metalation might induce structural changes on CoO influencing molecular adsorption and self-assembly. This project will therefore study in detail the properties of hydrogen and hydroxyls on cobalt oxide and magnesium oxide surfaces. This will be achieved by intentionally supplying hydrogen atoms or hydroxyls by an atom source or by the dissociation of water respectively. Further, dehydrogenative or dehalogenated homocoupling between molecules, and the formation of covalent networks employing metalorganic bonds will be studied on oxide surfaces. The potential of functionalizing oxide surfaces will be explored by investigating the role of atomic-scale defects, naturally occurring or created by ion or electron irradiation, in triggering or even catalyzing appropriate surface reactions. Finally, scanning probe spectroscopies will be used to determine the electronic properties of the molecular systems. By Scanning Tunneling Spectroscopy molecular frontier orbitals and the energy-level alignment at the molecule-oxide interface will be studied. By Kelvin Probe Force Microscopy local contact potential differences within molecular layers and across the molecule-oxide interface will be investigated.The activities of this project are well embedded within the activities of the funCOS research unit. The local view complements the studies of molecular adsorption by non-local electron spectroscopy and scattering methods employed in the other funCOS projects. In collaboration with funCOS 6 a theoretical modeling of the scanning probe results will be devised.
该项目的目的是在原子尺度上研究分子在氧化物表面的吸附、自组装和共价网络形成。为此,采用低温扫描隧道显微镜和超高真空非接触式原子力显微镜。funCOS分子工具箱中的分子将沉积在CoO、Co3O4和MgO表面,并在原子尺度上研究它们的吸附行为和自组装。FunCOS 1将通过选择分子侧基和激活尚未在氧化物上研究过的分子间结合方案,进一步发展分子自组装的控制。羧基和氨基之间的氢键,卤素键和氧化物表面形成的金属配位网络是主要的兴趣。研究了官能团和金属附原子在氧化物上的热稳定性。与官能团活化相关的是分子表面反应引起的分子-底物相互作用的其他修饰。一个突出的例子是在第一个funCOS资助期间在MgO和CoO上发现的游离基卟啉的自-自金属化。有迹象表明,自金属化过程中释放的氢可能引起CoO的结构变化,影响分子的吸附和自组装。因此,该项目将详细研究氧化钴和氧化镁表面的氢和羟基的性质。这将通过分别通过原子源或通过水的解离有意地提供氢原子或羟基来实现。此外,分子之间的脱氢或脱卤均偶联,以及利用金属有机键形成的共价网络将在氧化物表面上进行研究。功能化氧化表面的潜力将通过研究原子尺度缺陷的作用来探索,自然发生或由离子或电子照射产生,在触发甚至催化适当的表面反应。最后,扫描探针光谱将用于确定分子系统的电子性质。利用扫描隧道光谱研究了分子边界轨道和分子-氧化物界面的能级排列。通过开尔文探针力显微镜将研究分子层内和分子-氧化物界面的局部接触电位差。这个项目的活动很好地融入了科科司研究单位的活动。局部观点补充了其他funCOS项目中采用的非局部电子能谱和散射方法的分子吸附研究。与funcos6合作,将设计扫描探针结果的理论模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Sabine Maier其他文献
Professorin Dr. Sabine Maier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Electronic states of artificially-stacked atomic-layer thinfilms with Rashba effect and topological electronic states
具有Rashba效应的人工堆叠原子层薄膜的电子态和拓扑电子态
- 批准号:
23H01853 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Multi-atomic Layered Electronic Metal-organic Materials
职业:多原子层状电子金属有机材料
- 批准号:
2143569 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Atomic-scale Imaging of Novel Electronic States in Kagome Superconductors
Kagome 超导体中新型电子态的原子尺度成像
- 批准号:
2216080 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
High mobility thermoelectric materials: clathrates with controlled electronic structure in caged crystal structure by guest atomic orbital selection
高迁移率热电材料:通过客体原子轨道选择在笼状晶体结构中具有受控电子结构的包合物
- 批准号:
22K04699 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Two-Dimensional Amorphous Carbon with Tunable Atomic Structures As A Novel Dielectric Material for Advanced Electronic Applications
具有可调原子结构的二维非晶碳作为先进电子应用的新型介电材料
- 批准号:
2139185 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Probing and Controlling Electronic Dynamics in Matter with Atomic Spatiotemporal Resolution
用原子时空分辨率探测和控制物质中的电子动力学
- 批准号:
2110633 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
MRI: Acquisition of a NanoRaman Atomic Force Microscopy (AFM) System for Multi-Property Measurements in Electronic and Other Materials
MRI:购买纳米拉曼原子力显微镜 (AFM) 系统,用于电子和其他材料的多性能测量
- 批准号:
2117727 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
CAS: Revealing the Atomic and Electronic Structures of the Photoelectrode/Catalyst/Water Interfaces and Their Effects on Solar Water Splitting
CAS:揭示光电极/催化剂/水界面的原子和电子结构及其对太阳能水分解的影响
- 批准号:
2054986 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Atomic-scale imaging of a static and dynamic ordered electronic state pinned by lattice defects
由晶格缺陷钉扎的静态和动态有序电子态的原子尺度成像
- 批准号:
452020359 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Control of topological electronic state of bismuth atomic layer using epitaxial strain
利用外延应变控制铋原子层的拓扑电子态
- 批准号:
20K03821 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)