Unique continuation principles and equidistribution properties of eigenfunctions
特征函数的独特连续原理和等分布性质
基本信息
- 批准号:239209451
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project is devoted to the study of oscillation and concentration properties of solutions of second order elliptic partial differential equations. They could be eigenfunctions of a self-adjoint operator, as well as solutions of an inhomogeneous equation without any special kind of boundary conditions. The aim is to estimate the variation of local L^2 averages, i.e. averages of the (absolute value of the) square of the solution over a small ball or cube, within a bounded region. Particular attention will be paid to problems with a multiscale structure. One can interpret the mentioned local L^2 averages as samples for the distribution of the amplitude of the solution. We want to study whether uniformly placed samples within the region give a good control of the L^2 norm of the solution on the whole region. In particular, we aim to derive an explicit bound on the observability constant.
本研究项目致力于研究二阶椭圆型偏微分方程解的振动性和集中性。它们可以是自伴算子的本征函数,也可以是没有任何特殊边界条件的非齐次方程的解。其目的是估计局部L^2平均值的变化,即在有界区域内小球或立方体上解的平方(绝对值)的平均值。将特别注意多尺度结构的问题。可以将上述L^2局部平均值解释为解的振幅分布的样本。我们要研究在区域内均匀放置样本是否能很好地控制整个区域上解的L^2范数。特别地,我们的目标是得到可观测性常数的一个显式界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ivan Veselic其他文献
Professor Dr. Ivan Veselic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ivan Veselic', 18)}}的其他基金
Random Schrödinger operators with breather potentials as a paradigmatic model for non-linear influence of randomness
具有呼吸势的随机薛定谔算子作为随机性非线性影响的范例模型
- 批准号:
394221243 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Multiscale version of the Logvinenko-Sereda Theorem
Logvinenko-Sereda 定理的多尺度版本
- 批准号:
280969390 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Estimates on spectral gaps for quantum waveguide Schrödinger operators
量子波导薛定谔算子的光谱间隙估计
- 批准号:
27091790 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Spectral properties of random Schroedinger operators and random operators on manifolds and graphs
随机薛定谔算子以及流形和图上的随机算子的谱特性
- 批准号:
5423391 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Analysis of spectral properties of solid-state Schrödinger operators.
固态薛定谔算子的光谱特性分析。
- 批准号:
5371487 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Fellowships
Quantitative unique continuation properties of elliptic PDEs with variable 2nd order coefficients and applications in control theory, Anderson localization, and photonics
具有可变二阶系数的椭圆偏微分方程的定量独特连续性质及其在控制理论、安德森定位和光子学中的应用
- 批准号:
441959487 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Controlled heat equation with random control set and/or stochastic inhomogeneous diffusivity
具有随机控制集和/或随机非均匀扩散率的受控热方程
- 批准号:
471212562 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
- 批准号:
2350351 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
- 批准号:
ST/Z000025/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Development of support measures and clarification of promotion factors for the expansion and continuation of intergenerational programs
制定支持措施并明确促进因素,以扩大和延续代际计划
- 批准号:
23H00906 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
- 批准号:
2307132 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Arizona Department of Health Services, MFRPS Maintenance and continuation of the State Manufactured Food Regulatory Progam
亚利桑那州卫生服务部、MFRPS 维护和延续州制造食品监管计划
- 批准号:
10829093 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
- 批准号:
EP/W032236/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
- 批准号:
EP/X026027/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
CyberCorps: Scholarship for Service (Renewal): A Continuation Program at Mississippi State University
CyberCorps:服务奖学金(续签):密西西比州立大学的继续项目
- 批准号:
2234515 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant