Schrödinger-Operatoren
薛定谔算子
基本信息
- 批准号:144407855
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Heisenberg Fellowships
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The precondition for a Heisenberg Programme funding is high scientific quality and originality of the research project at international level and suitability for further qualification as a university teacher. Applicants need to meet all the requirements for appointment to a permanent professorship.The aim of this programme is to enable outstanding scientists to prepare for a scientific leadership function, and simultaneously work on further research topics. This research does not necessarily need to be planned and carried out in the form of a project.For this reason, and unlike the procedure in other funding programmes, both the abstracts of applications and final reports are not required and will therefore not be published in GEPRIS.
海森堡计划资助的先决条件是高科学质量和国际水平的研究项目的原创性,并适合作为大学教师的进一步资格。申请人需要满足任命为永久教授的所有要求。该计划的目的是使杰出的科学家为科学领导职能做好准备,同时从事进一步的研究课题。这项研究并不一定需要以项目形式规划和进行,因此,与其他资助计划的程序不同,申请摘要和最后报告都不需要,因此不会在GEPRIS上发表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ivan Veselic其他文献
Professor Dr. Ivan Veselic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ivan Veselic', 18)}}的其他基金
Random Schrödinger operators with breather potentials as a paradigmatic model for non-linear influence of randomness
具有呼吸势的随机薛定谔算子作为随机性非线性影响的范例模型
- 批准号:
394221243 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Multiscale version of the Logvinenko-Sereda Theorem
Logvinenko-Sereda 定理的多尺度版本
- 批准号:
280969390 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Unique continuation principles and equidistribution properties of eigenfunctions
特征函数的独特连续原理和等分布性质
- 批准号:
239209451 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Estimates on spectral gaps for quantum waveguide Schrödinger operators
量子波导薛定谔算子的光谱间隙估计
- 批准号:
27091790 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Spectral properties of random Schroedinger operators and random operators on manifolds and graphs
随机薛定谔算子以及流形和图上的随机算子的谱特性
- 批准号:
5423391 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Analysis of spectral properties of solid-state Schrödinger operators.
固态薛定谔算子的光谱特性分析。
- 批准号:
5371487 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Fellowships
Quantitative unique continuation properties of elliptic PDEs with variable 2nd order coefficients and applications in control theory, Anderson localization, and photonics
具有可变二阶系数的椭圆偏微分方程的定量独特连续性质及其在控制理论、安德森定位和光子学中的应用
- 批准号:
441959487 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Controlled heat equation with random control set and/or stochastic inhomogeneous diffusivity
具有随机控制集和/或随机非均匀扩散率的受控热方程
- 批准号:
471212562 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
两类拟线性Schrödinger方程正规化解的存在性与多重性研究
- 批准号:QN25A010018
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
一类四阶非线性Schrödinger方程的规化解
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
分数阶非线性Schrödinger方程快速算法研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类Schrödinger-Poisson系统解的研究
- 批准号:12301144
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非局部空间 Schrödinger 型方程的高效及高精度守恒算法
- 批准号:2023JJ40656
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
矩阵非线性Schrödinger类系统的简并非线性波及其相互作用机制研究
- 批准号:12305001
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Chern-Simons-Schrödinger方程中的几类变分问题
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一类不满足Berestycki-Lions条件Schrödinger方程解的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带位势的Sobolev临界或超临界Schrödinger方程(组)正规化解及其性态研究
- 批准号:
- 批准年份:2022
- 资助金额:29 万元
- 项目类别:地区科学基金项目
相似海外基金
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Fundamental mechanisms and obstacles in the bilinear control of Schrödinger equations
薛定谔方程双线性控制的基本机制和障碍
- 批准号:
RGPIN-2016-05741 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Schrödinger Operators on Lattices
职业:格子上的薛定谔算子
- 批准号:
2143369 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Costruction of solutions to Schrödinger equations via wave packet transform and its application
Schr 解决方案的构建
- 批准号:
22K03394 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Random Matrices, Random Schrödinger Operators, and Applications
随机矩阵、随机薛定谔算子和应用
- 批准号:
2153335 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
MPS-Ascend: Ergodic Schrödinger Operators and Quasicrystals
MPS-Ascend:遍历薛定谔算子和准晶体
- 批准号:
2213277 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Schrödinger operators with complex potentials
具有复杂势的薛定谔算子
- 批准号:
2465259 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Solution of the many-electron Schrödinger equation with deep neural networks
用深度神经网络求解多电子薛定谔方程
- 批准号:
2443624 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship