QII-TAQS: All-Photonic Quantum Network

QII-TAQS:全光子量子网络

基本信息

  • 批准号:
    1936345
  • 负责人:
  • 金额:
    $ 144万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Development of quantum computers and networks will require large-scale connections at the quantum level between many particles. These special connections between the particles, known as qubit entanglement, are essential for applications in quantum computing, communications, and sensing. Approaches that have been intensely studied to generate such entanglement utilize neutral atoms, ions, or superconducting circuits and rely on strong qubit-qubit interactions. Successful entanglement of these matter-based qubits is challenging due to deleterious interactions with the environment. Here an alternative approach is explored using a photonic-chip platform based on silicon nitride to realize highly entangled photon states. Such a platform has significant advantages over other photonic-chip materials such as silicon by offering record low losses in an integrated platform. Realization of an all-photonic platform for deterministic generation of photonic states will have broad impact across all quantum information technologies. For example, such a scheme would enable measurement-based universal computation, where computation occurs by performing single-qubit measurements on a highly-entangled resource state.This research project aims to create an integrated photonics platform that can generate highly-entangled states of light in near-deterministic fashion at high rates and with high fidelity. These highly-entangled states will serve as scalable photonic building blocks for generating cluster states for quantum computers and quantum networks. The platform will be based on a nonlinear multiplexing scheme in the frequency domain that allows overcoming the poor scaling with loss associated with spatial and temporal multiplexing. The rate of entangled photon generation will be dramatically increased by leveraging recent advances in massively parallel photonic on-chip devices that can (1) generate and convert photons within a well-defined spectral grid with high efficiency and (2) store light on-demand for timescales on the order of hundreds of nanoseconds with high efficiency, using massively parallel micron-size devices. It is projected that the generation rate of entangled Bell pairs can be increased over what is currently possible by at least two orders of magnitude, from 1 microsecond to 200 microseconds. Ultimately, the work aims to lead to a scalable platform for which the generation rate of entangled photons scales only polynomially (as opposed to exponentially) with the number of resources (detectors, resonators, etc.).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算机和网络的发展将需要许多粒子之间在量子水平上的大规模连接。 粒子之间的这些特殊连接,称为量子比特纠缠,对于量子计算,通信和传感的应用至关重要。 已经被深入研究的产生这种纠缠的方法利用中性原子,离子或超导电路,并依赖于强量子比特-量子比特相互作用。 由于与环境的有害相互作用,这些基于物质的量子比特的成功纠缠具有挑战性。 在这里,另一种方法是探索使用基于氮化硅的光子芯片平台,以实现高度纠缠的光子态。 这种平台通过在集成平台中提供创纪录的低损耗而比其他光子芯片材料(例如硅)具有显著优势。 实现确定性产生光子态的全光子平台将对所有量子信息技术产生广泛影响。 例如,这种方案将实现基于测量的通用计算,其中计算通过对高度纠缠的资源状态执行单量子比特测量来进行。本研究项目旨在创建一个集成光子学平台,该平台可以以高速率和高保真度以近确定性方式生成光的高度纠缠态。 这些高度纠缠态将作为可扩展的光子构建块,用于为量子计算机和量子网络生成簇态。 该平台将基于频域中的非线性多路复用方案,该方案允许克服与空间和时间多路复用相关联的具有损耗的不良缩放。 通过利用大规模并行光子片上器件的最新进展,纠缠光子产生的速率将显著增加,所述大规模并行光子片上器件可以(1)在明确定义的光谱网格内以高效率产生和转换光子,以及(2)使用大规模并行微米尺寸器件以高效率按需存储光达数百纳秒量级的时间尺度。 据预测,纠缠贝尔对的产生率可以比目前可能的增加至少两个数量级,从1微秒到200微秒。 最终,这项工作的目的是导致一个可扩展的平台,其中纠缠光子的生成速率仅与资源(探测器,谐振器等)的数量呈多项式(而不是指数)。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loading short pulses into long lifetime cavities
将短脉冲加载到长寿命腔体中
  • DOI:
    10.1364/cleo_qels.2022.fm5b.3
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hinney, Jakob;Dave, Utsav D.;Molina, Andres Gil;Ji, Xingchen;Lipson, Michal
  • 通讯作者:
    Lipson, Michal
High-Efficiency On-Chip Frequency Conversion in the Telecom Band
电信频段的高效片上变频
  • DOI:
    10.1364/cleo_si.2022.sm4k.2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao, Yun;Kim, Bok Young;Ji, Xingchen;Okawachi, Yoshitomo;Lipson, Michal;Gaeta, Alexander L.
  • 通讯作者:
    Gaeta, Alexander L.
Picosecond-resolution single-photon time lens for temporal mode quantum processing
用于时间模式量子处理的皮秒分辨率单光子时间透镜
  • DOI:
    10.1364/optica.439827
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Joshi, Chaitali;Sparkes, Ben M.;Farsi, Alessandro;Gerrits, Thomas;Verma, Varun;Ramelow, Sven;Nam, Sae Woo;Gaeta, Alexander L.
  • 通讯作者:
    Gaeta, Alexander L.
Frequency-Domain Quantum Interference with Correlated Photons from an Integrated Microresonator
  • DOI:
    10.1103/physrevlett.124.143601
  • 发表时间:
    2020-04-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Joshi, Chaitali;Farsi, Alessandro;Gaeta, Alexander L.
  • 通讯作者:
    Gaeta, Alexander L.
Guiding light at criticality and beyond
临界及临界后的指路明灯
  • DOI:
    10.1364/cleo_qels.2021.fm1m.4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodrigues, Janderson R.;Dave, Utsav D.;Mohanty, Aseema;Ji, Xingchen;Datta, Ipshita;Gutierrez-Jauregui, Ricardo;Almeida, Vilson R.;Ansejo-Garcia, Ana;Lipson, Michal
  • 通讯作者:
    Lipson, Michal
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Gaeta其他文献

Brighter images with no added noise
更明亮的图像且无额外噪声
  • DOI:
    10.1038/491202a
  • 发表时间:
    2012-11-07
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Stéphane Clemmen;Alexander Gaeta
  • 通讯作者:
    Alexander Gaeta
Breakdown of dipole approximation in strong field ionization
强场电离中偶极近似的击穿
  • DOI:
    10.1364/cleo_qels.2014.fth5a.9
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Popmintchev;Carlos Hernandez;B. Shim;Ming;Franklin Dollar;C. Mancuso;J. A. Pérez;Xiaohui Gao;A. Hankla;Alexander Gaeta;M. Tarazkar;Dmitri Romanov;Robert Levis;A. Jaroń;Andreas Becker;L. Plaja;M. Murnane;H. Kapteyn;T. Popmintchev
  • 通讯作者:
    T. Popmintchev

Alexander Gaeta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Gaeta', 18)}}的其他基金

Nonlinear Photonics for Quantum State Generation and Processing
用于量子态生成和处理的非线性光子学
  • 批准号:
    2110615
  • 财政年份:
    2021
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
Quantum Processing via Four-Wave Mixing
通过四波混频进行量子处理
  • 批准号:
    1707918
  • 财政年份:
    2017
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
EFRI ACQUIRE: Development of Heterogenous Platform for Chip-Based Quantum Information Applications
EFRI ACQUIRE:基于芯片的量子信息应用异构平台的开发
  • 批准号:
    1641094
  • 财政年份:
    2016
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
  • 批准号:
    1640108
  • 财政年份:
    2016
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
Nonlinear Optical Interactions in Rb-Filled Photonic Band-Gap Fibers
填充 Rb 的光子带隙光纤中的非线性光学相互作用
  • 批准号:
    0969996
  • 财政年份:
    2010
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
REU-Site Program at the Center for Nanoscale Systems
纳米系统中心的 REU 站点计划
  • 批准号:
    0851951
  • 财政年份:
    2009
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant
Investigation of Nonlinear Wave Collapse with Ultrashort Laser Pulses
超短激光脉冲非线性波塌陷的研究
  • 批准号:
    0703870
  • 财政年份:
    2007
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
Center for Nanoscale Systems in Information Technologies
信息技术纳米系统中心
  • 批准号:
    0646547
  • 财政年份:
    2006
  • 资助金额:
    $ 144万
  • 项目类别:
    Cooperative Agreement
Propagation of Intense Ultrashort Pulses: Spatio-Temporal Dynamics at Femtosecond Time Scales
强超短脉冲的传播:飞秒时间尺度的时空动力学
  • 批准号:
    0244995
  • 财政年份:
    2003
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Ultrabroadband Supercontinuum Studies
合作提案:超宽带超连续谱研究
  • 批准号:
    0200415
  • 财政年份:
    2002
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 144万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了