QII-TAQS: Suppressing and Correcting Errors in Hybrid Superconducting Qubit Systems

QII-TAQS:抑制和纠正混合超导量子位系统中的错误

基本信息

  • 批准号:
    1936388
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Quantum information science - the use of quantum mechanics to perform novel computing, simulation, communication, and sensing - is poised to revolutionize computing, biochemistry, condensed matter physics, cryptography, and astronomy, as well as a host of other fields. One of the most promising technology platforms is based on electrical circuits made of superconducting materials and operated at cryogenic temperatures. Quantum computers based on these quantum circuits have already been created and used for simple applications. However, their performance is limited by errors in the basic operations that make up quantum algorithms. For quantum processors to realize their full potential, these errors must be made inconsequential. This project aims to develop new ways to model, suppress, and correct errors in quantum circuits. The approach uses both hybrid "hardware" - different types of physical circuit designs - and hybrid "firmware" - different error correction and suppression protocols - in combination. By leveraging this hybrid approach, the research aims to create modular, scalable unit cells that can be used to create large-scale quantum processors with low error rates. The project will also train graduate students in the rapidly-expanding field of quantum information technology, growing the workforce for both academia and industry.Several types of superconducting qubit designs exist, each with their own advantages and drawbacks. To date, no design combines the long-lived coherence and fast addressability necessary for use in large-scale quantum processors. Similarly, several methods for error suppression and correction exist, but most are only partially effective or are far too resource-intensive to be practical. This project combines different types of qubit hardware and multiple error correction schemes to realize ultra-low-error logical qubits. The key to the approach is to use hybrid error suppression protocols carefully designed to harness the detailed strengths and vulnerabilities of the basic physical qubit elements, while combining different qubit hardware to best leverage the protocols. The work includes using transmon qubits as "error detectors" for flux qubits used in quantum annealing protocols; combining dynamical decoupling with "generalized Markovian" noise for enhanced error suppression; using full quantum circuit simulations to correctly model the effects of noise channels; combining transmon and fluxonium qubits to achieve fast gates with ultra-long-lived coherence; and developing novel ways of encoding quantum information in decoherence-protected subspaces, together with other experimental and theoretical work. The eventual outcome of this project is intended to be the creation of logical qubits that function as modular, scalable unit cells. These basic modular elements can then be used in intermediate-scale quantum processors with no further error correction. Such modular elements that allow for resource-efficient error correction could be used in the full-scale, error-corrected quantum processors envisioned in the early days of quantum computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学-使用量子力学进行新颖的计算、模拟、通信和传感-将给计算、生物化学、凝聚态物理、密码学和天文学以及许多其他领域带来革命性的变化。最有希望的技术平台之一是基于超导材料制成的电路,并在低温下运行。基于这些量子电路的量子计算机已经被创造出来,并用于简单的应用。然而,它们的性能受到组成量子算法的基本运算中的错误的限制。为了让量子处理器充分发挥其潜力,必须让这些错误变得无关紧要。该项目旨在开发新的方法来模拟、抑制和纠正量子电路中的错误。该方法结合使用了混合“硬件”--不同类型的物理电路设计--和混合“固件”--不同的纠错和抑制协议。通过利用这种混合方法,这项研究的目标是创造模块化、可扩展的单元单元,可以用来创建低错误率的大规模量子处理器。该项目还将培养快速发展的量子信息技术领域的研究生,增加学术界和工业界的劳动力。存在几种类型的超导量子比特设计,每种设计都有各自的优缺点。到目前为止,还没有一种设计将长期相干和快速寻址结合在一起,这是使用大规模量子处理器所必需的。同样,存在几种用于错误抑制和纠正的方法,但大多数方法仅部分有效,或者过于耗费资源而不切实际。该项目结合了不同类型的量子比特硬件和多种纠错方案,实现了超低误码的逻辑量子比特。该方法的关键是使用精心设计的混合错误抑制协议,以利用基本物理量子比特元素的详细优势和弱点,同时结合不同的量子比特硬件以最好地利用这些协议。这项工作包括:将跨声子量子比特用作量子退火协议中使用的通量量子比特的“错误检测器”;将动态去耦合与“广义马尔科夫”噪声相结合以增强错误抑制;使用全量子电路模拟来正确地模拟噪声通道的影响;将跨声子量子比特与通量量子比特相结合以实现具有超长寿命相干的快速门;以及开发在退相干保护的子空间中编码量子信息的新方法,以及其他实验和理论工作。该项目的最终结果是创建逻辑量子比特,作为模块化的、可扩展的单元单元。然后,这些基本的模块化元件可以用于中等规模的量子处理器,而不需要进一步的纠错。这种允许资源高效纠错的模块化元素可以用于量子计算早期设想的全面、纠错的量子处理器。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signatures of Open and Noisy Quantum Systems in Single-Qubit Quantum Annealing
  • DOI:
    10.1103/physrevapplied.19.034053
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zachary Morrell;Marc Vuffray;A. Lokhov;Andreas Bartschi;T. Albash;Carleton Coffrin
  • 通讯作者:
    Zachary Morrell;Marc Vuffray;A. Lokhov;Andreas Bartschi;T. Albash;Carleton Coffrin
High-quality Thermal Gibbs Sampling with Quantum Annealing Hardware
  • DOI:
    10.1103/physrevapplied.17.044046
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Nelson;Marc Vuffray;A. Lokhov;T. Albash;Carleton Coffrin
  • 通讯作者:
    J. Nelson;Marc Vuffray;A. Lokhov;T. Albash;Carleton Coffrin
Customized Quantum Annealing Schedules
  • DOI:
    10.1103/physrevapplied.17.044005
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    M. Khezri;X. Dai;Rui Yang;T. Albash;A. Lupascu;Daniel A. Lidar
  • 通讯作者:
    M. Khezri;X. Dai;Rui Yang;T. Albash;A. Lupascu;Daniel A. Lidar
Suppression of Crosstalk in Superconducting Qubits Using Dynamical Decoupling
  • DOI:
    10.1103/physrevapplied.18.024068
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Vinay Tripathi;Huo Chen;M. Khezri;K. Yip;E. Levenson-Falk;Daniel A. Lidar
  • 通讯作者:
    Vinay Tripathi;Huo Chen;M. Khezri;K. Yip;E. Levenson-Falk;Daniel A. Lidar
Modeling Low- and High-Frequency Noise in Transmon Qubits with Resource-Efficient Measurement
通过资源高效测量对 Transmon 量子位中的低频和高频噪声进行建模
  • DOI:
    10.1103/prxquantum.5.010320
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Tripathi, Vinay;Chen, Huo;Levenson-Falk, Eli;Lidar, Daniel A.
  • 通讯作者:
    Lidar, Daniel A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eli Levenson-Falk其他文献

Eli Levenson-Falk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eli Levenson-Falk', 18)}}的其他基金

Reducing Quasiparticle Decoherence in Superconducting Quantum Circuits
减少超导量子电路中的准粒子退相干
  • 批准号:
    1900135
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了