Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning

使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物

基本信息

  • 批准号:
    2102592
  • 负责人:
  • 金额:
    $ 42.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Membrane-based separation technologies have great promise to dramatically drive down the energy, carbon, and water intensity of traditional thermally-driven separation processes such as distillation. The creation of novel membrane materials with tailorable yet predictable structure and properties holds the key to providing low energy solutions to some of the nation’s most challenging and important separations, such as in clean energy industries (e.g., hydrogen gas purification) and environmental remediation (e.g., carbon capture). However, the development cycles of such materials are usually exceptionally long due to the requisite trial-and-error strategy employed. This project aims to combine simulations, machine learning, and experimental studies to accelerate the development of high-performance polymer gas separation membranes. The knowledge gained from this project will enable a more rational strategy for the design of advanced materials for energy-efficient separations and provide potentially revolutionary solutions to the grand materials challenges in the membrane separation field. This project will also strengthen the multi-disciplinary collaboration for incorporating machine learning into polymeric membrane materials. In addition to advancing knowledge and technology, the research will be integrated with graduate and undergraduate student education and training opportunities and through local K-12 student and teacher outreach programs. The overarching goal of this project is to accelerate the discovery and enrich the fundamental understanding of highly permeable and selective polymer gas separation membranes using an active learning scheme that synergistically combines molecular simulations, machine learning, and experiments. The scope of this project will include (1) establishing a standardized polymer database by combining existing database, open literature, and high-throughput molecular simulations; (2) employing transfer learning, molecular simulations, and experiments to develop accurate surrogate models that map out chemistry-property relations for polymer gas separation membranes; (3) establishing a Bayesian Optimization framework to guide the iteration of transfer learning and experimental discoveries; and (4) using classification together with detailed molecular simulation and experimental study to understand molecular features impacting polymer free volume architecture and gas transport properties. The Materials Informatics-based active learning approach to be established in this project will be a valuable strategy for the field concerning polymer separation membranes, and it can be readily extended to design polymers with other desirable properties beyond gas separation, which can save the cost and time traditionally required for new material development in general.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
膜分离技术在极大地降低传统热驱动分离过程(如蒸馏)的能量、碳和水强度方面前景广阔。具有可定制但可预测的结构和性能的新型膜材料的创造,是为国家一些最具挑战性和最重要的分离提供低能量解决方案的关键,例如在清洁能源行业(如氢气净化)和环境修复(如碳捕获)中。然而,由于采用了必要的试错策略,这类材料的开发周期通常非常长。该项目旨在将模拟、机器学习和实验研究相结合,以加快高性能聚合物气体分离膜的开发。从该项目中获得的知识将为设计节能分离的先进材料提供更合理的战略,并为膜分离领域的重大材料挑战提供潜在的革命性解决方案。该项目还将加强将机器学习纳入聚合物膜材料的多学科合作。除了推进知识和技术,这项研究还将与研究生和本科生的教育和培训机会相结合,并通过当地的K-12学生和教师推广计划。该项目的总体目标是利用协同结合分子模拟、机器学习和实验的主动学习方案,加速发现和丰富对高渗透和选择性聚合物气体分离膜的基本了解。该项目的范围将包括(1)结合现有的数据库、开放文献和高通量分子模拟建立标准化的聚合物数据库;(2)利用转移学习、分子模拟和实验开发精确的替代模型,绘制聚合物气体分离膜的化学-性质关系;(3)建立贝叶斯优化框架以指导转移学习和实验发现的迭代;以及(4)使用分类结合详细的分子模拟和实验研究来了解影响聚合物自由体积结构和气体传输性质的分子特征。在这个项目中建立的基于材料信息学的主动学习方法对于聚合物分离膜领域将是一个有价值的战略,它可以很容易地扩展到设计除了气体分离之外具有其他理想性能的聚合物,这可以从总体上节省传统上新材料开发所需的成本和时间。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Rationalization with Environment-based Augmentations
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tengfei Luo其他文献

Quantum annealing for combinatorial optimization: a benchmarking study
用于组合优化的量子退火:一项基准测试研究
  • DOI:
    10.1038/s41534-025-01020-1
  • 发表时间:
    2025-05-16
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Seongmin Kim;Sang-Woo Ahn;In-Saeng Suh;Alexander W. Dowling;Eungkyu Lee;Tengfei Luo
  • 通讯作者:
    Tengfei Luo
Thermal transport in thermoelectrics from first-principles calculations
根据第一性原理计算热电学中的热传输
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keivan Esfarjani;Junichiro Shiorai;Takuma Shiga;Zhiting Tian;Tengfei Luo;Gang Chen
  • 通讯作者:
    Gang Chen
Environmental protein corona on nanoplastics altered the responses of skin keratinocytes and fibroblast cells to the particles
纳米塑料上的环境蛋白冠改变了皮肤角质形成细胞和成纤维细胞对颗粒的反应
  • DOI:
    10.1016/j.jhazmat.2025.138722
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Kayla Simpson;Leisha Martin;Shamus L. O’Leary;John Watt;Seunghyun Moon;Tengfei Luo;Wei Xu
  • 通讯作者:
    Wei Xu
Inverse binary optimization of convolutional neural network in active learning efficiently designs nanophotonic structures
基于主动学习的卷积神经网络逆二值化优化有效设计纳米光子结构
  • DOI:
    10.1038/s41598-025-99570-z
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jaehyeon Park;Zhihao Xu;Gyeong-Moon Park;Tengfei Luo;Eungkyu Lee
  • 通讯作者:
    Eungkyu Lee
Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure
用于设计平面多层光子结构的量子启发遗传算法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihao Xu;Wenjie Shang;Seongmin Kim;Alexandria Bobbitt;Eungkyu Lee;Tengfei Luo
  • 通讯作者:
    Tengfei Luo

Tengfei Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tengfei Luo', 18)}}的其他基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
  • 批准号:
    2224307
  • 财政年份:
    2022
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
  • 批准号:
    2124850
  • 财政年份:
    2021
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
  • 批准号:
    2040565
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
  • 批准号:
    2001079
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
  • 批准号:
    1949910
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
  • 批准号:
    1937923
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
  • 批准号:
    1931850
  • 财政年份:
    2019
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
  • 批准号:
    1706039
  • 财政年份:
    2017
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant

相似海外基金

A human slice model to understand the role of fibrosis in children with bladder exstrophy
人体切片模型了解纤维化在膀胱外翻儿童中的作用
  • 批准号:
    MR/X030946/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Research Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Using genetics to understand the role of hormones in postmenopausal health
利用遗传学了解激素在绝经后健康中的作用
  • 批准号:
    EP/Y031970/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Research Grant
A novel technology to understand environmental changes in marine sediments
了解海洋沉积物环境变化的新技术
  • 批准号:
    MR/X035387/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Fellowship
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
  • 批准号:
    BB/Y512564/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Training Grant
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Continuing Grant
The evolution of Montiaceae: integrating phylogeny, life history, and physiology to understand a global ecological radiation
Montiaceae的进化:整合系统发育、生活史和生理学以了解全球生态辐射
  • 批准号:
    2327957
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
  • 批准号:
    ES/Z502753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了