Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
基本信息
- 批准号:2102592
- 负责人:
- 金额:$ 42.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Membrane-based separation technologies have great promise to dramatically drive down the energy, carbon, and water intensity of traditional thermally-driven separation processes such as distillation. The creation of novel membrane materials with tailorable yet predictable structure and properties holds the key to providing low energy solutions to some of the nation’s most challenging and important separations, such as in clean energy industries (e.g., hydrogen gas purification) and environmental remediation (e.g., carbon capture). However, the development cycles of such materials are usually exceptionally long due to the requisite trial-and-error strategy employed. This project aims to combine simulations, machine learning, and experimental studies to accelerate the development of high-performance polymer gas separation membranes. The knowledge gained from this project will enable a more rational strategy for the design of advanced materials for energy-efficient separations and provide potentially revolutionary solutions to the grand materials challenges in the membrane separation field. This project will also strengthen the multi-disciplinary collaboration for incorporating machine learning into polymeric membrane materials. In addition to advancing knowledge and technology, the research will be integrated with graduate and undergraduate student education and training opportunities and through local K-12 student and teacher outreach programs. The overarching goal of this project is to accelerate the discovery and enrich the fundamental understanding of highly permeable and selective polymer gas separation membranes using an active learning scheme that synergistically combines molecular simulations, machine learning, and experiments. The scope of this project will include (1) establishing a standardized polymer database by combining existing database, open literature, and high-throughput molecular simulations; (2) employing transfer learning, molecular simulations, and experiments to develop accurate surrogate models that map out chemistry-property relations for polymer gas separation membranes; (3) establishing a Bayesian Optimization framework to guide the iteration of transfer learning and experimental discoveries; and (4) using classification together with detailed molecular simulation and experimental study to understand molecular features impacting polymer free volume architecture and gas transport properties. The Materials Informatics-based active learning approach to be established in this project will be a valuable strategy for the field concerning polymer separation membranes, and it can be readily extended to design polymers with other desirable properties beyond gas separation, which can save the cost and time traditionally required for new material development in general.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于膜的分离技术在大幅降低传统热驱动分离过程(如蒸馏)的能量、碳和水强度方面具有很大的潜力。创造具有可定制但可预测的结构和性质的新型膜材料是为国家一些最具挑战性和重要的分离提供低能耗解决方案的关键,例如在清洁能源行业(例如,氢气纯化)和环境修复(例如,碳捕获)。然而,由于采用了必要的试错策略,这类材料的开发周期通常特别长。该项目旨在将联合收割机模拟、机器学习和实验研究相结合,以加速高性能聚合物气体分离膜的开发。从该项目中获得的知识将为节能分离的先进材料的设计提供更合理的策略,并为膜分离领域的重大材料挑战提供潜在的革命性解决方案。该项目还将加强多学科合作,将机器学习纳入聚合物膜材料。除了推进知识和技术,研究将与研究生和本科生的教育和培训机会,并通过当地的K-12学生和教师推广计划相结合。该项目的总体目标是加速发现并丰富对高渗透性和选择性聚合物气体分离膜的基本理解,使用协同结合分子模拟,机器学习和实验的主动学习方案。本计画的内容包括:(1)结合现有的资料库、公开文献及高通量分子模拟,建立标准化的聚合物资料库;(2)利用迁移学习、分子模拟及实验,发展精确的替代模型,以描绘聚合物气体分离膜的化学性质关系;(3)建立贝叶斯优化框架,指导迁移学习和实验发现的迭代;以及(4)利用分类结合详细的分子模拟和实验研究来理解影响聚合物自由体积的分子特征结构和气体传输特性。在本项目中建立的基于材料信息学的主动学习方法将是聚合物分离膜领域的一个有价值的策略,并且它可以很容易地扩展到设计具有气体分离以外的其他期望性能的聚合物,该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Rationalization with Environment-based Augmentations
- DOI:10.1145/3534678.3539347
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Gang Liu;Tong Zhao;Jiaxi Xu;Te Luo;Meng Jiang
- 通讯作者:Gang Liu;Tong Zhao;Jiaxi Xu;Te Luo;Meng Jiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tengfei Luo其他文献
Quantum annealing for combinatorial optimization: a benchmarking study
用于组合优化的量子退火:一项基准测试研究
- DOI:
10.1038/s41534-025-01020-1 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:8.300
- 作者:
Seongmin Kim;Sang-Woo Ahn;In-Saeng Suh;Alexander W. Dowling;Eungkyu Lee;Tengfei Luo - 通讯作者:
Tengfei Luo
Thermal transport in thermoelectrics from first-principles calculations
根据第一性原理计算热电学中的热传输
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Keivan Esfarjani;Junichiro Shiorai;Takuma Shiga;Zhiting Tian;Tengfei Luo;Gang Chen - 通讯作者:
Gang Chen
Environmental protein corona on nanoplastics altered the responses of skin keratinocytes and fibroblast cells to the particles
纳米塑料上的环境蛋白冠改变了皮肤角质形成细胞和成纤维细胞对颗粒的反应
- DOI:
10.1016/j.jhazmat.2025.138722 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:11.300
- 作者:
Kayla Simpson;Leisha Martin;Shamus L. O’Leary;John Watt;Seunghyun Moon;Tengfei Luo;Wei Xu - 通讯作者:
Wei Xu
Inverse binary optimization of convolutional neural network in active learning efficiently designs nanophotonic structures
基于主动学习的卷积神经网络逆二值化优化有效设计纳米光子结构
- DOI:
10.1038/s41598-025-99570-z - 发表时间:
2025-04-30 - 期刊:
- 影响因子:3.900
- 作者:
Jaehyeon Park;Zhihao Xu;Gyeong-Moon Park;Tengfei Luo;Eungkyu Lee - 通讯作者:
Eungkyu Lee
Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure
用于设计平面多层光子结构的量子启发遗传算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhihao Xu;Wenjie Shang;Seongmin Kim;Alexandria Bobbitt;Eungkyu Lee;Tengfei Luo - 通讯作者:
Tengfei Luo
Tengfei Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tengfei Luo', 18)}}的其他基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
- 批准号:
2224307 - 财政年份:2022
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
- 批准号:
2124850 - 财政年份:2021
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
- 批准号:
2040565 - 财政年份:2020
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
- 批准号:
2001079 - 财政年份:2020
- 资助金额:
$ 42.7万 - 项目类别:
Continuing Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
- 批准号:
1949910 - 财政年份:2020
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
- 批准号:
1937923 - 财政年份:2020
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
- 批准号:
1931850 - 财政年份:2019
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
- 批准号:
1706039 - 财政年份:2017
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
相似海外基金
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Standard Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Research Grant
A human slice model to understand the role of fibrosis in children with bladder exstrophy
人体切片模型了解纤维化在膀胱外翻儿童中的作用
- 批准号:
MR/X030946/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Research Grant
Using genetics to understand the role of hormones in postmenopausal health
利用遗传学了解激素在绝经后健康中的作用
- 批准号:
EP/Y031970/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Research Grant
A novel technology to understand environmental changes in marine sediments
了解海洋沉积物环境变化的新技术
- 批准号:
MR/X035387/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Fellowship
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
BB/Y512564/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Training Grant
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Research Grant
COEXIST-Maximising data from fragmented bone to understand the coexistence of late Neanderthals and early Homo sapiens in central and southeast Europe
共存——最大化来自碎片骨骼的数据,以了解中欧和东南欧晚期尼安德特人和早期智人的共存
- 批准号:
EP/Y037448/1 - 财政年份:2024
- 资助金额:
$ 42.7万 - 项目类别:
Research Grant














{{item.name}}会员




