EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation

EAGER:合作研究:光激发超空化中纳米粒子的动力学

基本信息

  • 批准号:
    2040565
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Nanoparticles that can be propelled through liquids at high speed (called "nanoswimmers") can play important roles in applications such as targeted-drug delivery, in-situ diagnostics and nanofabrication. For such applications, controlling the direction of high-speed nanoswimmers is critical. However, high-speed nanoswimmers are mostly propelled by forces with random directions, and guided nanoswimmers are currently limited to slow speeds. Designing fully controllable yet fast-moving nanoswimmers thus has significant technological potential. Recent experiments have observed that extremely fast ( 100,000 micron/s) gold nanoparticle swimmers can be directed by light as an external energy source. However, the underlying mechanism is yet to be fully understood. This EAGER project will take the first step toward understanding this phenomenon by studying the force and energy balance of a nanoparticle driven by light. A combination of experiments and numerical simulations of the motion of the nanoswimmers will provide a basic understanding the dynamics of nanoswimmers and resolve questions about the underlying mechanisms of their motion. This, in turn, will provide new information that can lead to a wide range of advanced nanoengineering applications, such as selectively printing nanostructures at a surface for sensing applications or delivering drug-carrying nanoswimmers to biological cells under the skin using skin-penetrable near infrared light sources.The observed ultra-fast nanoswimmer motion has never been reported and could not be explained by Stokes law. This EAGER project will investigate a hypothesis that when the nanoparticle is excited by the light at the surface plasmon resonance (SPR) peak, a nanoscale bubble forms surrounding the particle (i.e., super-cavitation). This provides a near frictionless environment that allows it move at high speed, provided the bubble can remain intact. The objective of the project is to test this hypothesis by analyzing the forces (optical force and fluidic force) the nanoparticle experiences when moving inside the supercavitation bubble using multiscale modeling and experimental techniques. This project consists of two tasks. First, multi-scale modeling will be conducted to understand the nanoparticle dynamics in supercavitation. Second, experiments will be conducted to observe the nanoswimmer dynamics and validate the computation results. This project will unravel fundamental physics involving coupled effects of nanophotonic optical forces, optothermal super-cavitation, and nanoscale thermo-fluids. An essential aspect of this work will be the integration of research with education and training of the next generation of scientists and engineers in multi-disciplinary fields, which are crucial for the technology-intensive U.S. industries. We will educate graduate students at Notre Dame and undergraduate researchers at the Colorado Mesa University (CM), a Primarily Undergraduate Institution serving nearly 10,000 students including many rural, first-generation, non-traditional (single parents, veterans and returning students), Hispanic, and other student groups underrepresented in STEM disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以在液体中高速推进的纳米颗粒(称为“纳米游泳者”)可以在靶向药物输送、原位诊断和纳米纤维等应用中发挥重要作用。对于这样的应用,控制高速纳米游泳者的方向至关重要。然而,高速的纳米游泳者大多是由随机方向的力推动的,而引导的纳米游泳者目前仅限于低速。 因此,设计完全可控但快速移动的纳米游泳者具有重大的技术潜力。 最近的实验已经观察到,极快(100,000微米/秒)的金纳米粒子游泳者可以通过光作为外部能源来引导。然而,其基本机制尚未完全了解。EAGER项目将通过研究光驱动的纳米粒子的力和能量平衡,迈出理解这一现象的第一步。纳米游泳者运动的实验和数值模拟的结合将提供对纳米游泳者动力学的基本理解,并解决有关其运动的潜在机制的问题。 这反过来将提供新的信息,可以导致广泛的高级纳米工程应用,例如选择性地在表面打印纳米结构用于传感应用或使用皮肤可穿透的近红外光源将携带药物的纳米游泳者递送到皮肤下的生物细胞。观察到的超快纳米游泳者运动从未被报道过,并且不能用斯托克斯定律解释。这个EAGER项目将研究一个假设,即当纳米颗粒被表面等离子体共振(SPR)峰处的光激发时,纳米尺度的气泡围绕颗粒形成(即,超空化)。 这提供了一个几乎无摩擦的环境,允许它以高速移动,前提是气泡可以保持完整。 该项目的目的是通过使用多尺度建模和实验技术分析纳米颗粒在超空化气泡内移动时所经历的力(光学力和流体力)来测试这一假设。该项目包括两项任务。 首先,将进行多尺度建模以了解超空泡中的纳米颗粒动力学。 其次,将进行实验来观察纳米游泳者的动力学和验证计算结果。该项目将揭示涉及纳米光子光学力,光热超空化和纳米级热流体耦合效应的基础物理学。 这项工作的一个重要方面是将研究与多学科领域下一代科学家和工程师的教育和培训相结合,这对美国技术密集型产业至关重要。我们将教育圣母大学的研究生和科罗拉多梅萨大学(CM)的本科研究人员,这是一所私立本科院校,为近10,000名学生提供服务,其中包括许多农村,第一代,非传统(单亲,退伍军人和归国学生),西班牙裔,和其他学生团体在STEM学科中代表性不足。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization
  • DOI:
    10.1016/j.ijheatmasstransfer.2021.122188
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Siyu Tian;Dezhao Huang;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
  • 通讯作者:
    Siyu Tian;Dezhao Huang;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
Analytical model of optical force on supercavitating plasmonic nanoparticles
超空泡等离子体纳米颗粒的光学力分析模型
  • DOI:
    10.1364/oe.491699
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mandal, Amartya;Lee, Eungkyu;Luo, Tengfei
  • 通讯作者:
    Luo, Tengfei
Negative optical force field on supercavitating titanium nitride nanoparticles by a single plane wave
单平面波超空化氮化钛纳米颗粒的负光学力场
  • DOI:
    10.1515/nanoph-2021-0503
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Lee, Eungkyu;Luo, Tengfei
  • 通讯作者:
    Luo, Tengfei
Molecular-Level Understanding of Efficient Thermal Transport across the Silica–Water Interface
  • DOI:
    10.1021/acs.jpcc.1c06571
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihao Xu;Dezhao Huang;T. Luo
  • 通讯作者:
    Zhihao Xu;Dezhao Huang;T. Luo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tengfei Luo其他文献

Thermal transport in thermoelectrics from first-principles calculations
根据第一性原理计算热电学中的热传输
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keivan Esfarjani;Junichiro Shiorai;Takuma Shiga;Zhiting Tian;Tengfei Luo;Gang Chen
  • 通讯作者:
    Gang Chen
Quantum annealing for combinatorial optimization: a benchmarking study
用于组合优化的量子退火:一项基准测试研究
  • DOI:
    10.1038/s41534-025-01020-1
  • 发表时间:
    2025-05-16
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Seongmin Kim;Sang-Woo Ahn;In-Saeng Suh;Alexander W. Dowling;Eungkyu Lee;Tengfei Luo
  • 通讯作者:
    Tengfei Luo
Environmental protein corona on nanoplastics altered the responses of skin keratinocytes and fibroblast cells to the particles
纳米塑料上的环境蛋白冠改变了皮肤角质形成细胞和成纤维细胞对颗粒的反应
  • DOI:
    10.1016/j.jhazmat.2025.138722
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Kayla Simpson;Leisha Martin;Shamus L. O’Leary;John Watt;Seunghyun Moon;Tengfei Luo;Wei Xu
  • 通讯作者:
    Wei Xu
Inverse binary optimization of convolutional neural network in active learning efficiently designs nanophotonic structures
基于主动学习的卷积神经网络逆二值化优化有效设计纳米光子结构
  • DOI:
    10.1038/s41598-025-99570-z
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jaehyeon Park;Zhihao Xu;Gyeong-Moon Park;Tengfei Luo;Eungkyu Lee
  • 通讯作者:
    Eungkyu Lee
Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure
用于设计平面多层光子结构的量子启发遗传算法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihao Xu;Wenjie Shang;Seongmin Kim;Alexandria Bobbitt;Eungkyu Lee;Tengfei Luo
  • 通讯作者:
    Tengfei Luo

Tengfei Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tengfei Luo', 18)}}的其他基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
  • 批准号:
    2224307
  • 财政年份:
    2022
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
  • 批准号:
    2124850
  • 财政年份:
    2021
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
  • 批准号:
    2102592
  • 财政年份:
    2021
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
  • 批准号:
    2001079
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
  • 批准号:
    1949910
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
  • 批准号:
    1937923
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
  • 批准号:
    1931850
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
  • 批准号:
    1706039
  • 财政年份:
    2017
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了