Collaborative Research:SHF:Medium:Machine Learning on the Edge for Real-Time Microsecond State Estimation of High-Rate Dynamic Events

合作研究:SHF:Medium:边缘机器学习,用于高速动态事件的实时微秒状态估计

基本信息

  • 批准号:
    1955820
  • 负责人:
  • 金额:
    $ 50.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Computer control of dynamic systems from the manufacturing, robotics, and aviation fields traditionally operate on timescales of 10s or 100s of milliseconds. For example, an avionics system traveling at 1000 kilometers per hour and operating at 10 milliseconds per control decision will move three meters in the time allocated to each control decision. However, emerging hypersonic, space, and military systems require active control while operating at extreme velocities or while being subjected to accelerations or decelerations caused by explosions or high-speed collisions. These applications require control at timescales on the order of microseconds. Making control decisions for such systems often requires that the controller estimate the state of the system from indirect measurements such as vibration. Traditional methods for state prediction are based on first principles using finite element analysis (FEA), whose execution time scales as a square of the number of elements. This makes it impractical to evaluate FEA models at microsecond timescales. Models derived from machine learning can estimate the state of the system based on pre-curated datasets and require less workload as compared to an equivalent FEA model. Such models, when combined with domain-specific processors, could provide equivalent accuracy with higher throughput than FEA models, making microsecond-scale state modeling possible. However, there are currently no suitable development methodologies for systematic generation of machine-learning models at such extreme performance constraints. The objective of this research is to develop a structural model compiler that meets a given accuracy constraint, as well as a corresponding overlay generator on which the generated model meets a given microsecond-scale latency constraint. This research will advance the fundamental knowledge and skills required for the real-time decision-making and control of active structures that experience high-rate dynamic events.This project addresses two distinct but synergistic problems: (1) technologies to enable real-time decision-making and control of active structures that experience dynamic events at the microsecond timescale and (2) development of tools for optimization and synthesis of domain-specific processors for trained models. Recent academic and industrial work focusing on development of specialized architectures for evaluating Long Short Term Memory (LSTM) models generally yield “one-off” designs tuned to a specific Field Programmable Gate Array (FPGA)--often a server class FPGA--and have rigid, “baked in” design decisions. This makes it difficult to compare alternative or competing optimization techniques for a desired target FPGA platform. To solve this, this project is developing a generalized programmable processor architecture that incorporates a repertoire of optional features designed to accelerate specific aspects of LSTMs and support associated model optimizations. The architecture is both programmable and customizable, allowing it to serve as a common platform for evaluating different approaches for accelerating LSTM models. Concurrently, the investigators are developing a set of benchmark datasets for structural state estimation with accuracy and performance requirements. The project is also developing useful artifacts for subsequent research in edge-based machine learning, including a method for comparing different LSTM model-pruning and compression approaches and comparing different microarchitecture designs. Code and hardware designs developed from this project are open-source.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自制造业、机器人和航空领域的动态系统的计算机控制传统上在10毫秒或100毫秒的时间尺度上操作。 例如,一个以每小时1000公里的速度运行的航空电子系统,每个控制决策的工作时间为10毫秒,在分配给每个控制决策的时间内,该系统将移动3米。 然而,新兴的高超音速,空间和军事系统需要主动控制,同时以极高的速度运行,或受到爆炸或高速碰撞引起的加速或减速。 这些应用需要以微秒量级的时间尺度进行控制。 为这样的系统做出控制决策通常需要控制器根据诸如振动的间接测量来估计系统的状态。 用于状态预测的传统方法基于使用有限元分析(FEA)的第一原理,其执行时间按元素数量的平方缩放。 这使得在微秒时间尺度上评估FEA模型变得不切实际。 从机器学习中导出的模型可以基于预先策划的数据集来估计系统的状态,并且与等效的FEA模型相比,需要更少的工作量。当与特定于域的处理器结合时,这样的模型可以提供与FEA模型相同的精度和更高的吞吐量,从而使微秒级的状态建模成为可能。 然而,目前还没有合适的开发方法来在这种极端的性能约束下系统地生成机器学习模型。 本研究的目的是开发一个结构模型编译器,满足给定的精度约束,以及相应的覆盖生成器上生成的模型满足给定的微秒级的延迟约束。 本研究将推进经历高速率动态事件的主动结构的实时决策和控制所需的基本知识和技能。本项目解决两个不同但协同的问题:(1)能够对在微秒时间尺度上经历动态事件的主动结构进行实时决策和控制的技术,以及(2)开发用于优化和综合域的工具,用于训练模型的特定处理器。 最近的学术和工业工作专注于开发用于评估长短期存储器(LSTM)模型的专用架构,通常会产生针对特定现场可编程门阵列(FPGA)(通常是服务器级FPGA)的“一次性”设计,并且具有严格的“内置”设计决策。 这使得很难比较用于所需目标FPGA平台的替代或竞争优化技术。为了解决这个问题,该项目正在开发一种通用的可编程处理器架构,该架构包含一系列可选功能,旨在加速LSTM的特定方面并支持相关的模型优化。 该架构是可编程和可定制的,使其能够作为评估加速LSTM模型的不同方法的通用平台。同时,研究人员正在开发一套基准数据集的精度和性能要求的结构状态估计。该项目还为基于边缘的机器学习的后续研究开发了有用的工件,包括一种比较不同LSTM模型修剪和压缩方法以及比较不同微架构设计的方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Making BRAMs Compute: Creating Scalable Computational Memory Fabric Overlays
让 BRAM 进行计算:创建可扩展的计算内存结构覆盖
A Customizable Domain-Specific Memory-Centric FPGA Overlay for Machine Learning Applications
适用于机器学习应用的可定制、特定领域、以内存为中心的 FPGA 叠加
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Andrews其他文献

Narcissism and Subjective Arousal in Response to Sexual Aggression: The Mediating Role of Perceived Power
自恋和对性侵犯的主观唤醒:感知权力的中介作用
  • DOI:
    10.3390/sexes2020017
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Virgil Zeigler‐Hill;David Andrews
  • 通讯作者:
    David Andrews
Millimetre radar threat level evaluation (MiRTLE) at standoff ranges
防区外范围的毫米雷达威胁等级评估 (MiRTLE)
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Harmer;N. Bowring;David Andrews;N. Rezgui;M. Southgate
  • 通讯作者:
    M. Southgate
A Comparison of Ultra Wide Band Conventional and Direct Detection Radar for Concealed Human Carried Explosives Detection
超宽带常规雷达与直接探测雷达隐蔽携带爆炸物探测的比较
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Harmer;N. Bowring;N. Rezgui;David Andrews
  • 通讯作者:
    David Andrews
A multifaceted active swept millimetre-wave approach to the detection of concealed weapons
用于检测隐藏武器的多方面主动扫频毫米波方法
  • DOI:
    10.1117/12.800360
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Andrews;N. Bowring;N. Rezgui;M. Southgate;E. Guest;S. Harmer;A. Atiah
  • 通讯作者:
    A. Atiah
Theorizing Art Cinemas: Foreign, Cult, Avant-Garde, and Beyond
艺术电影理论化:外国、邪教、前卫及其他

David Andrews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Andrews', 18)}}的其他基金

Western Regional Noyce Initiative
西部地区诺伊斯倡议
  • 批准号:
    1418852
  • 财政年份:
    2014
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant
Designer photonics in nanostructured materials
纳米结构材料中的设计师光子学
  • 批准号:
    EP/K020382/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Research Grant
Western Regional Noyce Conference (WRNC)
西部地区诺伊斯会议 (WRNC)
  • 批准号:
    0957862
  • 财政年份:
    2009
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Fresno State Teaching Fellows (FRESTEF)
弗雷斯诺州立教学研究员 (FRESTEF)
  • 批准号:
    0934967
  • 财政年份:
    2009
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Optical Control of Intermolecular Forces
分子间力的光学控制
  • 批准号:
    EP/E021611/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Research Grant
Noyce Phase II: Program for the Recruitment of Mathematics and Science Teachers (PROMSE)
诺伊斯第二期:数学和科学教师招聘计划(PROMSE)
  • 批准号:
    0733849
  • 财政年份:
    2007
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Extending the Thread Execution Model for Hybrid CPU/FPGA Architectures
扩展混合 CPU/FPGA 架构的线程执行模型
  • 批准号:
    0311599
  • 财政年份:
    2003
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
ITR: Computation and Communication in Sensor Webs
ITR:传感器网络中的计算和通信
  • 批准号:
    0313242
  • 财政年份:
    2003
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
SMECTEP
SMECTEP
  • 批准号:
    0202863
  • 财政年份:
    2002
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Secondary Science, Mathematics Preservice Partnership
中学科学、数学职前伙伴关系
  • 批准号:
    9852170
  • 财政年份:
    1999
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了