EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-Tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
基本信息
- 批准号:2001255
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bayesian networks are a computational model that is very efficient for computing in the presence of uncertainty. It excels in such tasks as predicting stock market behavior, disease progression, etc. It is ideal for taking an event that occurred and predicting the likelihood of different known causes to have been the contributing factor. For example, given the symptoms of a patient, it can compute the probabilities of various diseases that could be causing the symptoms. Unfortunately, implementing Bayesian networks usually requires complex hardware that is expensive, prone to failure, dissipates too much energy and consumes too much area on a computer chip. The goal of this research is to overcome these disadvantages by replacing traditional electronic hardware with magnetic devices that interact with each other in a special way to elicit Bayesian inference. This can reduce the hardware complexity and all associated costs dramatically, making Bayesian networks compact and efficient. This research will establish the viability of this approach through extensive simulations. Graduate students will be trained in this field to produce a pool of skilled scientists and engineers with cutting-edge knowledge.Bayesian networks for computing in the presence of uncertainty leverage Bayesian inference engines implemented with complex hardware that often involves microcontrollers, shift registers, analog-to-digital converters, logic gates, etc. that dissipate exorbitant amounts of energy and have enormous footprints on a chip. It ha recently been shown by the project team that magnetic tunnel junctions (MTJs) that interact with each other by means of dipole coupling can implement Bayesian networks with vastly reduced energy cost and much smaller footprints. Two dipole coupled MTJs A and B can realize an extremely efficient 2-node Bayesian network, where the probabilities of high and low resistance states of MTJ A are set by current or voltage, while the (random) resistance state of MTJ B is determined by varying degrees of dipole coupling between the two MTJs. The degree of dipole coupling is tuned with local strain applied to the soft layer of MTJ B using electrical excitation. This allows one to generate any desired anti-correlation or correlation between the resistance states of the two MTJs that can be varied between 0% and 100% using electrical excitation. In turn, this allows the generation of programmable conditional probabilities that can be exploited for Bayesian networks. This research will build a simulation base for this approach, test the viability of MTJ-based inference engines under different scenarios and design optimal sub-systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
贝叶斯网络是一种在存在不确定性的情况下非常有效的计算模型。它在预测股市行为、疾病进展等任务中表现出色。它非常适合于处理已发生的事件,并预测不同已知原因的可能性。例如,给定患者的症状,它可以计算可能导致这些症状的各种疾病的概率。不幸的是,实现贝叶斯网络通常需要复杂的硬件,这些硬件昂贵、容易故障、消耗太多能量和消耗太多计算机芯片上的面积。这项研究的目标是通过用磁性设备取代传统的电子硬件来克服这些缺点,磁性设备以一种特殊的方式相互作用,从而得出贝叶斯推理。这可以显著降低硬件复杂性和所有相关成本,使贝叶斯网络变得紧凑而高效。这项研究将通过广泛的模拟来确定这种方法的可行性。研究生将接受这一领域的培训,以培养出一批具有尖端知识的熟练科学家和工程师。在存在不确定性的情况下进行计算的贝叶斯网络利用通过复杂硬件实现的贝叶斯推理引擎,这些硬件通常涉及微控制器、移位寄存器、模数转换器、逻辑门等,这些硬件消耗过多的能量,并在芯片上占用大量空间。项目组最近已经证明,通过偶极耦合相互作用的磁性隧道结(MTJ)可以实现极大地降低能源成本和更小的占地面积的贝叶斯网络。两个偶极耦合的MTJ A和B可以实现非常有效的2节点贝叶斯网络,其中MTJ A的高阻态和低阻态的概率由电流或电压来设置,而MTJ B的(随机)电阻状态由两个MTJ之间偶极耦合的不同程度来决定。偶极子耦合的程度是通过施加在MTJ B软层上的局部应变来调节的。这允许人们在两个MTJ的电阻状态之间产生任何期望的反相关或相关,其可以使用电激励在0%和100%之间变化。反过来,这允许生成可用于贝叶斯网络的可编程条件概率。这项研究将为这种方法建立一个模拟基础,测试基于MTJ的推理机在不同场景下的生存能力,并设计最优的子系统。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An observable effect of spin inertia in slow magneto-dynamics: Increase of the switching error rates in nanoscale ferromagnets
慢磁动力学中自旋惯性的可观察效应:纳米级铁磁体中开关错误率的增加
- DOI:10.1088/1361-648x/ac0cb4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Rahman, Rahnuma;Bandyopadhyay, Supriyo
- 通讯作者:Bandyopadhyay, Supriyo
Robustness of Binary Stochastic Neurons Implemented With Low Barrier Nanomagnets Made of Dilute Magnetic Semiconductors
用稀磁半导体制成的低势垒纳米磁体实现二元随机神经元的鲁棒性
- DOI:10.1109/lmag.2022.3202135
- 发表时间:2022
- 期刊:
- 影响因子:1.2
- 作者:Rahman, Rahnuma;Bandyopadhyay, Supriyo
- 通讯作者:Bandyopadhyay, Supriyo
The Cost of Energy-Efficiency in Digital Hardware: The Trade-Off between Energy Dissipation, Energy–Delay Product and Reliability in Electronic, Magnetic and Optical Binary Switches
数字硬件的能源效率成本:电子、磁性和光学二进制开关的能量耗散、能量延迟乘积与可靠性之间的权衡
- DOI:10.3390/app11125590
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Rahman, Rahnuma;Bandyopadhyay, Supriyo
- 通讯作者:Bandyopadhyay, Supriyo
Bayesian reasoning machine on a magneto-tunneling junction network
磁隧道连接网络上的贝叶斯推理机
- DOI:10.1088/1361-6528/abae97
- 发表时间:2020
- 期刊:
- 影响因子:3.5
- 作者:Nasrin, Shamma;Drobitch, Justine;Shukla, Priyesh;Tulabandhula, Theja;Bandyopadhyay, Supriyo;Trivedi, Amit Ranjan
- 通讯作者:Trivedi, Amit Ranjan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Supriyo Bandyopadhyay其他文献
Reducing error rates in straintronic multiferroic dipole-coupled nanomagnetic logic by pulse shaping
通过脉冲整形降低应变电子多铁偶极耦合纳米磁逻辑的错误率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Munira;Yunkun Xie;S. Nadri;M. Forgues;Mohammad Salehi Fashami;J. Atulasimha;Supriyo Bandyopadhyay;Avik W. Ghosh - 通讯作者:
Avik W. Ghosh
Granular nanoelectronics
颗粒纳米电子学
- DOI:
10.1109/45.489730 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay;V. Roychowdhury - 通讯作者:
V. Roychowdhury
Information Processing with Electron Spins
电子自旋信息处理
- DOI:
10.5402/2012/697056 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Extreme Subwavelength Magnetoelastic Electromagnetic Antenna Implemented with Multiferroic Nanomagnets
采用多铁纳米磁体实现的极亚波长磁弹性电磁天线
- DOI:
10.1002/admt.202000316 - 发表时间:
2020 - 期刊:
- 影响因子:6.8
- 作者:
J. Drobitch;Anulekha De;K. Dutta;P. Pal;A. Adhikari;A. Barman;Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Skewed Straintronic Magnetotunneling-Junction-Based Ternary Content-Addressable Memory—Part II
基于偏应变电子磁隧道效应的三元内容可寻址存储器——第二部分
- DOI:
10.1109/ted.2017.2706744 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Susmita Dey Manasi;M. Al;J. Atulasimha;Supriyo Bandyopadhyay;A. Trivedi - 通讯作者:
A. Trivedi
Supriyo Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Supriyo Bandyopadhyay', 18)}}的其他基金
EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.
EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。
- 批准号:
2235789 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006843 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Single nanowire spin-valve based infrared photodetctors and equality bit comparators
基于单纳米线自旋阀的红外光电探测器和等位比较器
- 批准号:
1609303 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
- 批准号:
1124714 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Single Spin Logic and Matrix Element Engineering: A New Nanoelectronic Computing Paradigm for Ultra Low Power Dissipation
单自旋逻辑和矩阵元件工程:超低功耗的新纳米电子计算范式
- 批准号:
0726373 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
- 批准号:
0506710 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative GOALI Proposal: Self-assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
- 批准号:
0523966 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NER: Novel Electrochemically Self Assembled Nanowire Infrared Photodetectors
NER:新型电化学自组装纳米线红外光电探测器
- 批准号:
0206950 - 财政年份:2002
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SGER: A Self Assembled Spintronic Quantum Gate
SGER:自组装自旋电子量子门
- 批准号:
0196554 - 财政年份:2001
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant














{{item.name}}会员




