NER: Nanowire Non-Volatile Memory
NER:纳米线非易失性存储器
基本信息
- 批准号:0403494
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to investigate and develop a new type of non-volatile electronic memory based on a novel conduction bistability observed in regimented arrays of self assembled semiconductor nanowires [Appl. Phys. Lett., 76, 460 (2000)]. The wires have two stable conductance states that differ in conductance by four orders of magnitude at room temperature. These two states can be used to encode binary bits 0 and 1. When a sample is left in the high conductance state at room temperature, it remains in that state for 1 year before reverting to the low conductance state, and when it is left in the low conductance state, it persists in that state for longer than the monitoring period of 1 year. The long retention time may be partially a result of quantum confinement and the phonon bottleneck effect. This system is a promising candidate for non-volatile random access memory with excellent packing density. Apart from the retention time, two important figures of merit for memory devices are the access speed for reading/writing and the dynamic power dissipation during the read/write operation. The measured writing time (the reading time is much smaller) is ~ 2 msec, which we believe can be reduced significantly with appropriate device design. The threshold voltage for switching is a few tens of volt, which too can be reduced significantly using the same design. However, the unavoidable penalty involved in reducing the access time and power dissipation is a concomitant reduction of the retention time. In order to develop a truly advanced memory, these contradictory requirements must be met in an optimal manner which makes this research high risk and exploratory. A secondary purpose of the NER is to identify unequivocally the mechanism responsible for the bistability. Virginia Commonwealth University has an active outreach program involving high school students (the RAPME program for minorities and the QUESTERS program). Students from both programs will be involved in this research (K-12 education). This research will be carried out in collaboration with a group in Kurchatov Institute, Moscow, Russia.
我们建议研究和开发一种新型的非易失性电子存储器,其基于在自组装半导体纳米线的有序阵列中观察到的新型传导双稳态[Appl.Phys.Lett.,76,460(2000)]。该导线具有两个稳定的电导状态,在室温下电导相差四个数量级。这两种状态可用于编码二进制位0和1。当样品在室温下处于高电导状态时,在恢复到低电导状态之前,它保持在该状态1年,当它处于低电导状态时,它保持在该状态的时间长于1年的监测期。长的保留时间可能部分是量子限制和声子瓶颈效应的结果。该系统是一个有前途的候选人,非易失性随机存取存储器具有良好的封装密度。除了保持时间之外,存储器设备的两个重要品质因数是阅读/写的访问速度和读/写操作期间的动态功耗。测得的写入时间(阅读时间要小得多)约为2毫秒,我们相信通过适当的器件设计可以显著减少。开关的阈值电压为几十伏,使用相同的设计也可以显著降低。然而,不可避免的惩罚涉及减少访问时间和功耗是一个伴随的保留时间减少。为了开发一个真正先进的记忆,这些相互矛盾的要求必须以最佳的方式满足,这使得这项研究具有高风险和探索性。NER的第二个目的是明确识别负责双稳态的机制。弗吉尼亚联邦大学有一个积极的外展计划,涉及高中学生(RAPME计划为少数民族和QUESTERS计划)。来自这两个项目的学生将参与这项研究(K-12教育)。这项研究将与俄罗斯莫斯科库尔恰托夫研究所的一个小组合作进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Supriyo Bandyopadhyay其他文献
Reducing error rates in straintronic multiferroic dipole-coupled nanomagnetic logic by pulse shaping
通过脉冲整形降低应变电子多铁偶极耦合纳米磁逻辑的错误率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Munira;Yunkun Xie;S. Nadri;M. Forgues;Mohammad Salehi Fashami;J. Atulasimha;Supriyo Bandyopadhyay;Avik W. Ghosh - 通讯作者:
Avik W. Ghosh
Granular nanoelectronics
颗粒纳米电子学
- DOI:
10.1109/45.489730 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay;V. Roychowdhury - 通讯作者:
V. Roychowdhury
Information Processing with Electron Spins
电子自旋信息处理
- DOI:
10.5402/2012/697056 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Extreme Subwavelength Magnetoelastic Electromagnetic Antenna Implemented with Multiferroic Nanomagnets
采用多铁纳米磁体实现的极亚波长磁弹性电磁天线
- DOI:
10.1002/admt.202000316 - 发表时间:
2020 - 期刊:
- 影响因子:6.8
- 作者:
J. Drobitch;Anulekha De;K. Dutta;P. Pal;A. Adhikari;A. Barman;Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Skewed Straintronic Magnetotunneling-Junction-Based Ternary Content-Addressable Memory—Part II
基于偏应变电子磁隧道效应的三元内容可寻址存储器——第二部分
- DOI:
10.1109/ted.2017.2706744 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Susmita Dey Manasi;M. Al;J. Atulasimha;Supriyo Bandyopadhyay;A. Trivedi - 通讯作者:
A. Trivedi
Supriyo Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Supriyo Bandyopadhyay', 18)}}的其他基金
EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.
EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。
- 批准号:
2235789 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006843 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-Tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
- 批准号:
2001255 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Single nanowire spin-valve based infrared photodetctors and equality bit comparators
基于单纳米线自旋阀的红外光电探测器和等位比较器
- 批准号:
1609303 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
- 批准号:
1124714 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Single Spin Logic and Matrix Element Engineering: A New Nanoelectronic Computing Paradigm for Ultra Low Power Dissipation
单自旋逻辑和矩阵元件工程:超低功耗的新纳米电子计算范式
- 批准号:
0726373 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
- 批准号:
0506710 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative GOALI Proposal: Self-assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
- 批准号:
0523966 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NER: Novel Electrochemically Self Assembled Nanowire Infrared Photodetectors
NER:新型电化学自组装纳米线红外光电探测器
- 批准号:
0206950 - 财政年份:2002
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SGER: A Self Assembled Spintronic Quantum Gate
SGER:自组装自旋电子量子门
- 批准号:
0196554 - 财政年份:2001
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FastMOT - Fast gated superconducting nanowire camera for multi-functional optical tomograph
FastMOT - 用于多功能光学断层扫描的快速门控超导纳米线相机
- 批准号:
10063660 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
A Path to Superconducting Nanowire Readout of Xe- based detectors
Xe 探测器的超导纳米线读数之路
- 批准号:
ST/Y509929/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Innovation of electromigration-driven fine-injection method for nanowire scaling up
用于纳米线放大的电迁移驱动精细注射方法的创新
- 批准号:
23H01300 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of nanowire hybrid integrated devices
纳米线混合集成器件的开发
- 批准号:
22H00202 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Ultrafast Terahertz Polarimetry Enabled by Semiconductor Nanowire Sensors
半导体纳米线传感器实现超快太赫兹偏振测量
- 批准号:
EP/W018489/1 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Nanowire Frontiers: Materials and Devices
纳米线前沿:材料与器件
- 批准号:
RGPIN-2018-04015 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
SemiSynBio-III: Precision assembly and electronic properties of protein nanowire circuits using DNA origami
SemiSynBio-III:使用 DNA 折纸技术实现蛋白质纳米线电路的精密组装和电子特性
- 批准号:
2227399 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Printable nanowire-based materials for the seamless integration of electronic functionality into textiles
可印刷纳米线材料,用于将电子功能无缝集成到纺织品中
- 批准号:
RGPIN-2019-04294 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
The mechanism of electromigration studied by real-time ultrasound monitoring for single nanowire
单根纳米线实时超声监测研究电迁移机理
- 批准号:
22H01908 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)