Single nanowire spin-valve based infrared photodetctors and equality bit comparators
基于单纳米线自旋阀的红外光电探测器和等位比较器
基本信息
- 批准号:1609303
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infrared light is not visible to the human eye. It is usually detected with semiconductor detectors which exhibit a change in their electrical resistance under infrared illumination. The relative change in resistance at room temperature is, however, quite small, which necessitates cooling the detector with liquid nitrogen. In this research, a novel detector will be demonstrated, which relies on light changing the detector's resistance by affecting the quantum mechanical spin properties of the electrons that carry current. With this principle of detection, it is possible to make the resistance change in the detector much larger at room temperature. Room temperature infrared detectors are used in night vision, forensic science, astronomy, missile defense, car-collision avoidance systems and monitoring of global warming, to name a few. Bit comparators are electronic devices that compare two digital (binary) bits of information and render a yes/no decision based on whether the two bits are the same or different. They are important ingredients of electronic circuits and are typically implemented with transistors which cannot remember the decision once the decision has been rendered. A comparator that exploits spin dependent properties and uses magnetic devices instead of transistors can remember the decision and also use less energy. The ability to remember makes it possible to build superior digital electronic circuits that are faster and more error-resilient. In this research, such a comparator will be demonstrated. This project will also integrate research with graduate and undergraduate education, K-12 outreach through the Dean's Early Research Initiative program, and minority enrichment through the Richmond Minorities in Engineering Partnership.This is a proposal to fabricate and demonstrate two novel spintronic devices - an infrared photodetector and a reconfigurable bit comparator - working at room temperature. They will be fabricated with 10- and 50-nm diameter nanowire spin valves with InSb spacer and cobalt contacts. In the InSb spacer, only a single electronic subband is occupied at room temperature. Preliminary experiments in the lab have shown that in these nanowires, the major spin relaxation mechanism of electrons - namely the D'yakonov-Perel' mechanism - is eliminated owing to single subband occupancy, resulting in several-fold increase in the spin relaxation time. It has also been shown that the spin relaxation time can be modulated with infrared light, which will be exploited to build the photodetector. Such a photodetector can, in principle, exhibit near-zero dark current, giant light-to-dark contrast ratio and very high detectivity which always elude conventional photo-detectors because of phonon excitations. Controlling the magnetization state of a nanomagnet with electrically generated strain has been recently demonstrated in our lab. That property will be leveraged to build the reconfigurable bit comparator with unprecedented energy efficiency. These bit comparators are "non-volatile" since they incorporate magnetic elements and hence the result of the comparison can be stored indefinitely in the comparator. The devices will be fabricated with electrochemical self-assembly of nanowires, electron-beam lithography for patterning ferromagnetic contacts, and dielectrophoresis for capturing a single nanowire between a pair of contacts to implement the photodetector and bit comparator.
红外光是人眼不可见的。通常用半导体探测器来检测,半导体探测器在红外照明下表现出电阻的变化。然而,室温下电阻的相对变化非常小,因此需要用液氮冷却检测器。在这项研究中,将演示一种新型探测器,它依靠光通过影响携带电流的电子的量子力学自旋特性来改变探测器的电阻。利用这种检测原理,可以使检测器在室温下的电阻变化变得更大。室温红外探测器用于夜视、法医学、天文学、导弹防御、汽车防撞系统和全球变暖监测等。 位比较器是比较两个数字(二进制)信息位并根据这两个位是否相同或不同做出是/否决定的电子设备。它们是电子电路的重要组成部分,通常用晶体管来实现,一旦做出决定,晶体管就无法记住该决定。利用自旋相关特性并使用磁性器件而不是晶体管的比较器可以记住该决定并且使用更少的能量。记忆能力使得构建更快、更容错的卓越数字电子电路成为可能。在本研究中,将演示这样的比较器。 该项目还将研究与研究生和本科生教育、通过院长早期研究计划计划的 K-12 推广、以及通过里士满少数族裔工程合作伙伴关系进行少数族裔富集相结合。该项目旨在制造和演示两种新型自旋电子器件——红外光电探测器和可重构位比较器——在室温下工作。它们将采用直径为 10 纳米和 50 纳米的纳米线自旋阀制成,并带有 InSb 间隔物和钴触点。在InSb间隔物中,在室温下仅占据单个电子子带。实验室的初步实验表明,在这些纳米线中,电子的主要自旋弛豫机制(即D'yakonov-Perel'机制)由于单子带占据而被消除,导致自旋弛豫时间增加数倍。研究还表明,可以用红外光来调制自旋弛豫时间,这将用于构建光电探测器。 原则上,这种光电探测器可以表现出接近零的暗电流、巨大的明暗对比度和非常高的探测率,而传统光电探测器由于声子激发而始终无法实现这一点。我们的实验室最近演示了用电产生的应变控制纳米磁体的磁化状态。该特性将被用来构建具有前所未有的能源效率的可重构位比较器。这些位比较器是“非易失性”的,因为它们包含磁性元件,因此比较结果可以无限期地存储在比较器中。这些器件将通过纳米线电化学自组装、用于铁磁接触图案化的电子束光刻以及用于捕获一对接触之间的单根纳米线以实现光电探测器和位比较器的介电泳来制造。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magneto-elastic switching of magnetostrictive nanomagnets with in-plane anisotropy: the effect of material defects
- DOI:10.1088/1361-648x/aadb6a
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Md Ahsanul Abeed;J. Atulasimha;Supriyo Bandyopadhyay
- 通讯作者:Md Ahsanul Abeed;J. Atulasimha;Supriyo Bandyopadhyay
Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy
- DOI:10.1038/s41928-020-0432-x
- 发表时间:2020-06-29
- 期刊:
- 影响因子:34.3
- 作者:Bhattacharya, Dhritiman;Razavi, Seyed Armin;Atulasimha, Jayasimha
- 通讯作者:Atulasimha, Jayasimha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Supriyo Bandyopadhyay其他文献
Reducing error rates in straintronic multiferroic dipole-coupled nanomagnetic logic by pulse shaping
通过脉冲整形降低应变电子多铁偶极耦合纳米磁逻辑的错误率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Munira;Yunkun Xie;S. Nadri;M. Forgues;Mohammad Salehi Fashami;J. Atulasimha;Supriyo Bandyopadhyay;Avik W. Ghosh - 通讯作者:
Avik W. Ghosh
Granular nanoelectronics
颗粒纳米电子学
- DOI:
10.1109/45.489730 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay;V. Roychowdhury - 通讯作者:
V. Roychowdhury
Information Processing with Electron Spins
电子自旋信息处理
- DOI:
10.5402/2012/697056 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Extreme Subwavelength Magnetoelastic Electromagnetic Antenna Implemented with Multiferroic Nanomagnets
采用多铁纳米磁体实现的极亚波长磁弹性电磁天线
- DOI:
10.1002/admt.202000316 - 发表时间:
2020 - 期刊:
- 影响因子:6.8
- 作者:
J. Drobitch;Anulekha De;K. Dutta;P. Pal;A. Adhikari;A. Barman;Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Skewed Straintronic Magnetotunneling-Junction-Based Ternary Content-Addressable Memory—Part II
基于偏应变电子磁隧道效应的三元内容可寻址存储器——第二部分
- DOI:
10.1109/ted.2017.2706744 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Susmita Dey Manasi;M. Al;J. Atulasimha;Supriyo Bandyopadhyay;A. Trivedi - 通讯作者:
A. Trivedi
Supriyo Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Supriyo Bandyopadhyay', 18)}}的其他基金
EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.
EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。
- 批准号:
2235789 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006843 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-Tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
- 批准号:
2001255 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
- 批准号:
1124714 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Single Spin Logic and Matrix Element Engineering: A New Nanoelectronic Computing Paradigm for Ultra Low Power Dissipation
单自旋逻辑和矩阵元件工程:超低功耗的新纳米电子计算范式
- 批准号:
0726373 - 财政年份:2007
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
- 批准号:
0506710 - 财政年份:2005
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Collaborative GOALI Proposal: Self-assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
- 批准号:
0523966 - 财政年份:2005
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NER: Nanowire Non-Volatile Memory
NER:纳米线非易失性存储器
- 批准号:
0403494 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NER: Novel Electrochemically Self Assembled Nanowire Infrared Photodetectors
NER:新型电化学自组装纳米线红外光电探测器
- 批准号:
0206950 - 财政年份:2002
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SGER: A Self Assembled Spintronic Quantum Gate
SGER:自组装自旋电子量子门
- 批准号:
0196554 - 财政年份:2001
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于电子显微镜的一维纳米材料力电学的原位测量系统
- 批准号:50801009
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NMR study on stacking nanowire and its spin liquid state
堆叠纳米线及其自旋液态的核磁共振研究
- 批准号:
18K03548 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarifying physical mechanism of a very fast current-induced domain wall motion at low current density in RE-TM nanowire attributed to spin orbital torque.
阐明了 RE-TM 纳米线中低电流密度下极快的电流诱导畴壁运动归因于自旋轨道扭矩的物理机制。
- 批准号:
18K14128 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bottom-Up Integration of Vertical Nanowire Spin-Transistors on Silicon
硅上垂直纳米线自旋晶体管的自下而上集成
- 批准号:
17H02727 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electrically controlled spin qubit in Ge/Si nanowire with fast radio-frequency readout
具有快速射频读出功能的 Ge/Si 纳米线电控自旋量子位
- 批准号:
17K14076 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Bottom-Up Fabrication of Vertical Nanowire Spin-LEDs on Silicon
硅上垂直纳米线自旋 LED 的自下而上制造
- 批准号:
16K13671 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Carrier and Spin Dynamics in Large Spin-Orbit Semiconductor Nanowire Heterostructures
大型自旋轨道半导体纳米线异质结构中的载流子和自旋动力学
- 批准号:
1507844 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Hybrid Superconductor - Ge/Si core/shell nanowire devices
混合超导体 - Ge/Si 核/壳纳米线器件
- 批准号:
26790008 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Spin Torque Oscillators Based on Electric and Thermal Spin Currents in Self Assembled Ferromagnetic Nanowire Arrays
合作研究:自组装铁磁纳米线阵列中基于电和热自旋电流的自旋扭矩振荡器
- 批准号:
1309424 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Spin Torque Oscillators Based on Electric and Thermal Spin Currents in Self Assembled Ferromagnetic Nanowire Arrays
合作研究:自组装铁磁纳米线阵列中基于电和热自旋电流的自旋扭矩振荡器
- 批准号:
1309416 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Spin devices having InAs nanowire / ferromagnetic metal hybrid structures formed by selective-area growth
具有通过选择性区域生长形成的InAs纳米线/铁磁金属混合结构的自旋器件
- 批准号:
24560368 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




