NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
基本信息
- 批准号:1124714
- 负责人:
- 金额:$ 155万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual merit: This project is awarded under the Nanoelectronics for 2020 and Beyond competition, with support by multiple Directorates and Divisions at the National Science Foundation as well as by the Nanoelectronics Research Initiative of the Semiconductor Research Corporation. The complementary metal oxide semiconductor field effect transistor, considered the workhorse of modern computing machinery, is inherently energy-inefficient because it is a charge-based digital switch. In contrast, a single-domain nanomagnet with uniaxial shape anisotropy, that encodes binary bits in its magnetization orientation, is much more energy-efficient because it is a spin-based switch in which the spins internally interact. Therefore, magnetic computing circuits hold a potential advantage over their electronic counterparts. That advantage however will be lost if the methodology used to switch the magnet becomes so energy-inefficient that it adds an exorbitant energy overhead. To this end, a hybrid spintronic/straintronic paradigm for switching magnets has been developed that reduces the energy dissipation by several orders of magnitude and heralds an ultra-energy-efficient magnetic computing and signal processing architecture. This project will: (1) develop all the modeling tools necessary to simulate these devices and their switching dynamics. They will incorporate the effects of device and circuit stochasticity and thermal fluctuations via appropriate models such as stochastic Landau-Lifshitz-Gilbert equations and/or Fokker-Planck equations; (2) demonstrate Bennett clocking and successful logic bit propagation in a digital gate array fabricated with nanolithography, where clocking is carried out with tiny voltages generating strain; (3) design energy-efficient neuromorphic architectures based on multi-state hybrid spintronic/straintronic synapses and neurons that can process analog signals; and (4) demonstrate image processing with straintronic/spintronic nodes communicating via spin waves to implement specific image morphing algorithms. These image processors will be extremely fast since they will rely on the physics of magnetic interactions between spin wave circuits and the collective activity of multiferroic magnetic cells to elicit the required functionality, without requiring any software or execution of instruction sets. Broader Impact: The proposed research will potentially impact all areas of computing and signal processing. Computers employing the hybrid spintronics/straintronics approach can be so energy-efficient that they could operate by harvesting energy from the surroundings, without requiring a battery. Thus, they have unprecedented applications in medical devices implanted in an epileptic patient?s brain to monitor brain signals and warn of an impending seizure. They can run by harvesting energy from the patient?s body motion alone. They also have other applications in areas such as structural health monitoring where they can constantly monitor fatigue and fracture propagation in bridges and buildings, while harvesting energy from vibrations induced by wind or passing traffic. Integration of this research with education will entail traditional graduate and undergraduate student training, while minority enrichment will involve training high-school students recruited through the Richmond Area Program for Minorities in Engineering at Virginia Commonwealth University, minority outreach centers at University of California-Riverside, Office of Engineering Outreach and Engagement at Michigan, and the Center for Diversity in Engineering at University of Virginia. K-12 outreach will leverage the Math and Science Innovation Center at Richmond and the Summer Discovery Program at Virginia Commonwealth University. New graduate course material will be developed at each participating institution and disseminated through textbooks, tutorials and the worldwide web.
智力优点:该项目是在Nanoelectronics for 2020及以后的竞争中获得的,得到了国家科学基金会多个部门和部门以及半导体研究公司Nanoelectronics Research Initiative的支持。互补金属氧化物半导体场效应晶体管,被认为是现代计算机器的主力,本质上是能量效率低下的,因为它是一种基于电荷的数字开关。相比之下,具有单轴形状各向异性的单畴纳米磁体在其磁化方向上编码二进制位,这是更节能的,因为它是一种基于自旋的开关,其中自旋内部相互作用。因此,磁计算电路比其电子对应物具有潜在的优势。然而,如果用于切换磁体的方法变得如此能量效率低下以至于其增加了过高的能量开销,则该优势将丧失。为此,开发了一种用于切换磁体的混合自旋电子/应变电子范例,可将能量耗散降低几个数量级,并预示着超节能磁计算和信号处理架构的出现。该项目将:(1)开发所有必要的建模工具来模拟这些器件及其开关动态。他们将通过适当的模型,如随机Landau-Lifshitz-吉尔伯特方程和/或福克-普朗克方程,结合器件和电路的随机性和热波动的影响;(2)演示班尼特时钟和成功的逻辑位传播在一个数字门阵列制造的纳米光刻,其中时钟是用微小的电压产生应变;(3)设计基于多态混合自旋电子/应变子突触和可以处理模拟信号的神经元的节能神经形态架构;以及(4)演示通过自旋波通信的应变子/自旋电子节点的图像处理,以实现特定的图像变形算法。这些图像处理器将非常快,因为它们将依赖于自旋波电路之间的磁相互作用的物理学和多铁性磁性细胞的集体活动来引出所需的功能,而不需要任何软件或指令集的执行。更广泛的影响:拟议的研究将可能影响计算和信号处理的所有领域。采用混合自旋电子学/应变电子学方法的计算机可以非常节能,以至于它们可以通过从周围环境中收集能量来运行,而不需要电池。因此,它们在植入癫痫患者体内的医疗器械中具有前所未有的应用?监测大脑信号并警告即将发生的癫痫发作。它们能通过从病人身上获取能量来奔跑?的身体运动。它们在结构健康监测等领域也有其他应用,可以持续监测桥梁和建筑物的疲劳和断裂传播,同时从风或过往交通引起的振动中收集能量。这项研究与教育的整合将需要传统的研究生和本科生培训,而少数民族丰富将涉及培训高中学生通过里士满地区计划招募少数民族工程在弗吉尼亚联邦大学,少数民族外展中心在加州大学河滨分校,工程外展办公室和密歇根州的参与,以及弗吉尼亚大学工程多样性中心。K-12外展将利用里士满的数学和科学创新中心以及弗吉尼亚联邦大学的夏季发现计划。将在每个参与机构编制新的研究生课程材料,并通过教科书、教程和万维网传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Supriyo Bandyopadhyay其他文献
Reducing error rates in straintronic multiferroic dipole-coupled nanomagnetic logic by pulse shaping
通过脉冲整形降低应变电子多铁偶极耦合纳米磁逻辑的错误率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Munira;Yunkun Xie;S. Nadri;M. Forgues;Mohammad Salehi Fashami;J. Atulasimha;Supriyo Bandyopadhyay;Avik W. Ghosh - 通讯作者:
Avik W. Ghosh
Granular nanoelectronics
颗粒纳米电子学
- DOI:
10.1109/45.489730 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay;V. Roychowdhury - 通讯作者:
V. Roychowdhury
Information Processing with Electron Spins
电子自旋信息处理
- DOI:
10.5402/2012/697056 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Extreme Subwavelength Magnetoelastic Electromagnetic Antenna Implemented with Multiferroic Nanomagnets
采用多铁纳米磁体实现的极亚波长磁弹性电磁天线
- DOI:
10.1002/admt.202000316 - 发表时间:
2020 - 期刊:
- 影响因子:6.8
- 作者:
J. Drobitch;Anulekha De;K. Dutta;P. Pal;A. Adhikari;A. Barman;Supriyo Bandyopadhyay - 通讯作者:
Supriyo Bandyopadhyay
Skewed Straintronic Magnetotunneling-Junction-Based Ternary Content-Addressable Memory—Part II
基于偏应变电子磁隧道效应的三元内容可寻址存储器——第二部分
- DOI:
10.1109/ted.2017.2706744 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Susmita Dey Manasi;M. Al;J. Atulasimha;Supriyo Bandyopadhyay;A. Trivedi - 通讯作者:
A. Trivedi
Supriyo Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Supriyo Bandyopadhyay', 18)}}的其他基金
EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.
EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。
- 批准号:
2235789 - 财政年份:2022
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
- 批准号:
2006843 - 财政年份:2020
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-Tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
- 批准号:
2001255 - 财政年份:2020
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
Single nanowire spin-valve based infrared photodetctors and equality bit comparators
基于单纳米线自旋阀的红外光电探测器和等位比较器
- 批准号:
1609303 - 财政年份:2016
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
Single Spin Logic and Matrix Element Engineering: A New Nanoelectronic Computing Paradigm for Ultra Low Power Dissipation
单自旋逻辑和矩阵元件工程:超低功耗的新纳米电子计算范式
- 批准号:
0726373 - 财政年份:2007
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
- 批准号:
0506710 - 财政年份:2005
- 资助金额:
$ 155万 - 项目类别:
Continuing Grant
Collaborative GOALI Proposal: Self-assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
- 批准号:
0523966 - 财政年份:2005
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
NER: Novel Electrochemically Self Assembled Nanowire Infrared Photodetectors
NER:新型电化学自组装纳米线红外光电探测器
- 批准号:
0206950 - 财政年份:2002
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
SGER: A Self Assembled Spintronic Quantum Gate
SGER:自组装自旋电子量子门
- 批准号:
0196554 - 财政年份:2001
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
相似国自然基金
一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
- 批准号:20Y11910600
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
- 批准号:11875146
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
- 批准号:81770777
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
- 批准号:81601499
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
- 批准号:51505048
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
- 批准号:61572084
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
- 批准号:51509075
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Hybrid加速结构的理论及预制研究
- 批准号:11475201
- 批准年份:2014
- 资助金额:100.0 万元
- 项目类别:面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
- 批准号:41205073
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
- 批准号:51205392
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
- 批准号:
DP240103271 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Discovery Projects
Hybrid Electrochemically-paired Light Irradiated Organic Synthesis (Acronym: HELIOS)
混合电化学配对光照射有机合成(缩写:HELIOS)
- 批准号:
EP/Y037413/1 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Fellowship
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
- 批准号:
2339911 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Continuing Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
Development of hybrid permanent combined-function magnet for sustainable accelerators
开发用于可持续加速器的混合永磁组合功能磁体
- 批准号:
24K21037 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 155万 - 项目类别:
Continuing Grant