Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
基本信息
- 批准号:2003033
- 负责人:
- 金额:$ 19.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Demand for wireless data services will continue to rise rapidly in the foreseeable future. The goal of this project is to develop new advanced solutions for wireless access networks with the objectives of increasing network throughput and maximizing overall network utilities. Long-serving model-based solutions are facing severe limitations due to delays in tracking the ever-changing radio and network environment as well as measurement inaccuracies. The main novelty of this project is to bring new tools based on artificial neural networks (ANN) to meet those challenges. In particular, this project will investigate when, how, and why ANN-based learning techniques can be applied to a wide range of wireless networking problems with realistic constraints. This project will pursue transformative solutions that aim to benefit academia and industry alike. Specifically, this project will marry supervised and unsupervised learning techniques with time-tested models of physical resources, channels, traffic, and network utilities. An important task is to exploit commonalities of ANN-based solutions for a number of subproblems to develop a set of principled, holistic solutions for the overall wireless networking problem, seeking solutions that are scalable, computationally efficient, and highly adaptive. Pertinent learnability and complexity theories backing the solutions will also be developed, in order to offer generalizable design principles. The ANN-based solutions developed are expected to be a major building block of next generation wireless access networks with associated economic benefits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可预见的未来,对无线数据服务的需求将继续快速增长。 该项目的目标是为无线接入网络开发新的先进解决方案,以提高网络吞吐量和最大限度地提高整体网络效用。 由于跟踪不断变化的无线电和网络环境的延迟以及测量不准确,长期使用的基于模型的解决方案面临严重的限制。 该项目的主要新奇是引入基于人工神经网络(ANN)的新工具来应对这些挑战。 特别是,这个项目将调查何时,如何,以及为什么基于人工神经网络的学习技术可以应用到广泛的无线网络问题与现实的限制。 该项目将寻求旨在使学术界和工业界受益的变革性解决方案。 具体来说,该项目将监督和无监督学习技术与经过时间考验的物理资源,渠道,流量和网络实用程序模型相结合。 一个重要的任务是利用一些子问题的基于人工神经网络的解决方案的共性,为整个无线网络问题开发一套原则性的整体解决方案,寻求可扩展的,计算效率高,适应性强的解决方案。 支持解决方案的相关可学习性和复杂性理论也将得到发展,以提供可推广的设计原则。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Continuously Optimize Wireless Resource in Episodically Dynamic Environment
- DOI:10.1109/icassp39728.2021.9413503
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Haoran Sun;Wenqiang Pu;Minghe Zhu;Xiao Fu;Tsung-Hui Chang;Mingyi Hong
- 通讯作者:Haoran Sun;Wenqiang Pu;Minghe Zhu;Xiao Fu;Tsung-Hui Chang;Mingyi Hong
To Supervise or Not to Supervise: How to Effectively Learn Wireless Interference Management Models?
- DOI:10.1109/spawc51858.2021.9593184
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Bingqing Song;Haoran Sun;Wenqiang Pu;Sijia Liu;Mingyi Hong
- 通讯作者:Bingqing Song;Haoran Sun;Wenqiang Pu;Sijia Liu;Mingyi Hong
Learning to Beamform in Heterogeneous Massive MIMO Networks
- DOI:10.1109/twc.2022.3230662
- 发表时间:2020-11
- 期刊:
- 影响因子:10.4
- 作者:Minghe Zhu;Tsung-Hui Chang;Mingyi Hong
- 通讯作者:Minghe Zhu;Tsung-Hui Chang;Mingyi Hong
Optimal Solutions for Joint Beamforming and Antenna Selection: From Branch and Bound to Graph Neural Imitation Learning
- DOI:10.1109/tsp.2023.3244096
- 发表时间:2022-06
- 期刊:
- 影响因子:5.4
- 作者:S. Shrestha;Xiao Fu;Mingyi Hong
- 通讯作者:S. Shrestha;Xiao Fu;Mingyi Hong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyi Hong其他文献
Decentralized Min-Max Optimization: Formulations, Algorithms and Applications in Network Poisoning Attack
去中心化最小-最大优化:网络中毒攻击中的公式、算法和应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ioannis C. Tsaknakis;Mingyi Hong;Sijia Liu - 通讯作者:
Sijia Liu
A Distributed, Asynchronous and Incremental Algorithm for Nonconvex Optimization: An ADMM Based Approach
- DOI:
- 发表时间:
2014-12 - 期刊:
- 影响因子:0
- 作者:
Mingyi Hong - 通讯作者:
Mingyi Hong
Asynchronous Advantage Actor Critic: Non-asymptotic Analysis and Linear Speedup
异步优势演员评论家:非渐近分析和线性加速
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Han Shen;K. Zhang;Mingyi Hong;Tianyi Chen - 通讯作者:
Tianyi Chen
Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization—Part II: Applications
非光滑非凸优化的惩罚对偶分解方法-第二部分:应用
- DOI:
10.1109/tsp.2020.3001397 - 发表时间:
2020-06 - 期刊:
- 影响因子:5.4
- 作者:
Qingjiang Shi;Mingyi Hong;Xiao Fu;Tsung-Hui Chang - 通讯作者:
Tsung-Hui Chang
Efficient Distributed Optimization of Wind Farms Using Proximal Primal-Dual Algorithms
使用近端原对偶算法进行风电场的高效分布式优化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Annoni;E. Dall’Anese;Mingyi Hong;C. Bay - 通讯作者:
C. Bay
Mingyi Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyi Hong', 18)}}的其他基金
Conference: NSF Workshop on the Convergence of Smart Sensing Systems, Applications, Analytic and Decision Making
会议:NSF 智能传感系统、应用、分析和决策融合研讨会
- 批准号:
2334288 - 财政年份:2023
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
A Multi-Rate Feedback Control Framework for Design and Analyzing of Decentralized and Federated Learning
用于设计和分析去中心化联邦学习的多速率反馈控制框架
- 批准号:
2311007 - 财政年份:2023
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
CIF: Small: A Simple and Unifying Optimization Framework for Signal and Information Processing Problems with Min-Max Structures
CIF:Small:针对具有最小-最大结构的信号和信息处理问题的简单且统一的优化框架
- 批准号:
1910385 - 财政年份:2019
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Decomposition Framework for Non-convex Nonsmooth Optimization with Applications in Data Analytics
非凸非光滑优化的分解框架及其在数据分析中的应用
- 批准号:
1727757 - 财政年份:2017
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Optimal Provision of Backhaul and Radio Access Networks: A Cross-Network Approach
CIF:小型:协作研究:回程和无线接入网络的优化配置:跨网络方法
- 批准号:
1813090 - 财政年份:2017
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Optimal Provision of Backhaul and Radio Access Networks: A Cross-Network Approach
CIF:小型:协作研究:回程和无线接入网络的优化配置:跨网络方法
- 批准号:
1526078 - 财政年份:2015
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002874 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003098 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003111 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2003131 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003279 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 19.23万 - 项目类别:
Standard Grant