MLWiNS: Resource Constrained Mobile Data Analytics Assisted by the Wireless Edge

MLWiNS:无线边缘协助的资源受限移动数据分析

基本信息

  • 批准号:
    2003182
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Increasing amounts of data are being collected on mobile telephones and internet-of-things (IoT) devices. Users are interested in analyzing this data to extract actionable information, for example, identifying objects of interest from high-resolution mobile phone pictures. The state-of-the-art technique for such data analysis is via deep learning which makes use of sophisticated software algorithms modeled on the functioning of the human brain. Deep learning algorithms are, however, too complex to run on small, battery constrained mobile devices. The alternative, i.e., transmitting data to the mobile base station where the deep learning algorithm can be executed on a powerful server, consumes too much bandwidth. This project seeks to devise new methods to compress data before transmission, thus reducing bandwidth costs while still allowing for the data to be analyzed at the base station. Departing from existing data compression methods optimized for reproducing the original images, the project will use deep learning itself to compress the data in a fashion that only keeps the critical parts of data necessary for subsequent analysis. The resulting deep learning based compression algorithms will be simple enough to run on mobile devices while drastically reducing the amount of data that needs to be transmitted to mobile base stations for analysis, without significantly compromising the analysis performance. The proposed research will provide greater capability and functionality to mobile device users, enable extended battery lifetimes, and more efficient sharing of the wireless spectrum for analytics tasks. The project also envisions a multi-pronged effort aimed at outreach to communities of interest, educating and training the next generation of machine learning and wireless professionals at the K-12, undergraduate and graduate levels, and broadening participation of under-represented minority groups.The project seeks to learn “analytics-aware” compression schemes from data by training low-complexity compressor deep neural networks (DNNs) that execute on mobile devices and achieve a range of transmission rate and analytics accuracy targets. As a first step, efficient DNN pruning techniques will be developed to minimize the DNN complexity, while maintaining the rate-accuracy efficiency for one or a collection of analytics tasks. Next, to efficiently adapt to varying wireless channel conditions, the project will seek to design adaptive DNN architectures that can operate at variable transmission rates and computational complexities. For instance, when the wireless channel quality drops, the proposed compression scheme will be able to quickly reduce transmission rate in response while ensuring the same analytics accuracy, but at the cost of greater computational power on the mobile device. Further, wireless channel allocation and scheduling policies that leverage the proposed adaptive DNN architectures will be developed to optimize the overall analytics accuracy at the server. The benefits of the proposed approach in terms of total battery life savings for the mobile device will be demonstrated using detailed simulation studies of various wireless protocols including those used for LTE (Long Term Evolution) and mmWave channels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
越来越多的数据正在移动的电话和物联网(IoT)设备上收集。用户有兴趣分析这些数据以提取可操作的信息,例如,从高分辨率移动的手机图片中识别感兴趣的对象。这种数据分析的最先进技术是通过深度学习,它利用模拟人脑功能的复杂软件算法。然而,深度学习算法过于复杂,无法在小型电池受限的移动的设备上运行。另一种选择,即,将数据发送到移动的基站,其中深度学习算法可以在强大的服务器上执行,这消耗了太多的带宽。该项目旨在设计新的方法在传输前压缩数据,从而降低带宽成本,同时仍然允许在基站分析数据。与现有的数据压缩方法不同,该项目将使用深度学习本身来压缩数据,只保留后续分析所需的关键数据部分。由此产生的基于深度学习的压缩算法将足够简单,可以在移动的设备上运行,同时大幅减少需要传输到移动的基站进行分析的数据量,而不会显著影响分析性能。拟议的研究将为移动终端用户提供更大的能力和功能,延长电池寿命,并更有效地共享无线频谱以执行分析任务。该项目还设想了一项多管齐下的努力,旨在与感兴趣的社区进行外联,教育和培训K-12,本科和研究生级别的下一代机器学习和无线专业人员,该项目旨在通过训练低复杂度的压缩器深度神经网络(DNN),从数据中学习“分析感知”压缩方案。其在移动的设备上执行并实现一系列传输速率和分析准确性目标。作为第一步,将开发高效的DNN修剪技术,以最大限度地降低DNN复杂性,同时保持一个或一组分析任务的速率准确性效率。接下来,为了有效地适应不断变化的无线信道条件,该项目将寻求设计自适应DNN架构,这些架构可以以可变的传输速率和计算复杂度运行。例如,当无线信道质量下降时,所提出的压缩方案将能够作为响应快速降低传输速率,同时确保相同的分析准确性,但是以移动终端上的更大计算能力为代价。此外,将开发利用所提出的自适应DNN架构的无线信道分配和调度策略,以优化服务器的整体分析准确性。通过对各种无线协议(包括用于LTE(长期演进)和毫米波信道的无线协议)进行详细的仿真研究,将证明所提出的方法在节省移动终端的总电池寿命方面的优势。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-Shot Compression for Hypothesis Testing
用于假设检验的单次压缩
Feature Compression for Rate Constrained Object Detection on the Edge
用于边缘速率受限对象检测的特征压缩
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddharth Garg其他文献

Suitable triggering algorithms for detecting strong ground motions using MEMS accelerometers
Manipulation Attacks on Learned Image Compression
对学习图像压缩的操纵攻击
On the Limitation of Backdoor Detection Methods
论后门检测方法的局限性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georg Pichler;Marco Romanelli;Divya Prakash Manivannan;P. Krishnamurthy;F. Khorrami;Siddharth Garg;TU Wien
  • 通讯作者:
    TU Wien
Left parasternal approach for Bentall procedure in a patient of Marfan syndrome with severe pectus excavatum
Behavioral Synthesis for Hardware Security
硬件安全的行为综合
  • DOI:
    10.1007/978-3-030-78841-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srinivas Katkoori;Omkar Dokur;Rajeev Joshi;Kavya Lakshmi Kalyanam;Md Adnan Zaman;Ariful Islam;Nandeesha Veeranna;Benjamin Carrion Schafer;Rajat Pranesh Santikellur;Subhra Chakraborty;S. Bhunia;Hannah Badier;Jean;Philippe Coussy;Guy Gogniat;C. Pilato;D. Sciuto;Francesco Regazzoni;Siddharth Garg;Ramesh Karri;Anirban Sengupta;Mahendra Rathor;Matthew Lewandowski;Chen Liu;Chengmo Yang;Farhath Zareen;Robert Karam;S. T. C. Konigsmark;Wei Ren;Martin D. F. Wong;Deming Chen;Mike Borowczak;Ranga Vemuri;Steffen Peter;T. Givargis;Wei Hu;Armaiti Ardeshiricham;Lingjuan Wu;Ryan Kastner;Christian Pilato Politecnico;di Milano;Italy Milan;ST Micro;Singapore Singapore;S. Islam
  • 通讯作者:
    S. Islam

Siddharth Garg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddharth Garg', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: Towards Trustworthy Deep Neural Network Based AI: A Systems Approach
SaTC:核心:媒介:协作:迈向基于可信深度神经网络的人工智能:一种系统方法
  • 批准号:
    1801495
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FOundations of Secure and TrustEd HardwaRe (FOSTER) Workshop
安全和可信硬件基础 (FOSTER) 研讨会
  • 批准号:
    1749175
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Large: Collaborative: Verifiable Hardware: Chips that Prove their Own Correctness
TWC:大型:协作:可验证的硬件:证明自身正确性的芯片
  • 批准号:
    1565396
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Re-thinking Electronic Design Automation Algorithms for Secure Outsourced Integrated Circuit Fabrication
职业:重新思考安全外包集成电路制造的电子设计自动化算法
  • 批准号:
    1553419
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
STARSS: Small: New Attack Vectors and Formal Security Analysis for Integrated Circuit Logic Obfuscation
STARSS:小型:集成电路逻辑混淆的新攻击向量和形式安全分析
  • 批准号:
    1527072
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: CSR: Understanding and Enhancing Unsafe Rust Code in Resource-constrained Systems
CRII:CSR:理解和增强资源受限系统中的不安全 Rust 代码
  • 批准号:
    2245753
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
  • 批准号:
    2890421
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
  • 批准号:
    10739603
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
SUPPORT SERVICES FOR THE PREVENTION AND TREATMENT THROUGH A COMPREHENSIVE CARE CONTINUUM FOR HIV-AFFECTED ADOLESCENTS IN RESOURCE CONSTRAINED SETTINGS IMPLEMENTATION SCIENCE NETWORK
通过全面护理连续体为资源有限环境中受艾滋病毒影响的青少年提供预防和治疗支持服务 实施科学网络
  • 批准号:
    10917617
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
MultiTasking and Continual Learning for Audio Sensing Tasks on Resource-Constrained Platforms
资源受限平台上音频传感任务的多任务处理和持续学习
  • 批准号:
    EP/X01200X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
COMPLETION OF DATA HARMONIZATION IN PREVENTION AND TREATMENT THROUGH A COMPREHENSIVE CARE CONTINUUM FOR HIV-AFFECTED ADOLESCENTS IN RESOURCE CONSTRAINED SETTINGS (PATC3H) PROGRAM
通过资源有限环境中受艾滋病毒影响的青少年的全面护理连续体 (PATC3H) 计划完成预防和治疗方面的数据协调
  • 批准号:
    10887928
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
An Efficient Split In-network Learning Approach for Resource Constrained Wireless Networks
资源受限无线网络的高效分割网内学习方法
  • 批准号:
    23K11080
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices
SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架
  • 批准号:
    2211163
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TARA - Disrupting the continuum of care for resource constrained settings
TARA - 破坏资源有限环境的连续护理
  • 批准号:
    10053357
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
SBIR Phase I: A Hardware-Aware AutoML Platform for Resource-Constrained Devices
SBIR 第一阶段:适用于资源受限设备的硬件感知 AutoML 平台
  • 批准号:
    2136679
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了