Degradation of Organic Semiconductors: Functional and Mechanistic Descriptions from Macroscale to Nanoscale

有机半导体的降解:从宏观到纳米尺度的功能和机理描述

基本信息

  • 批准号:
    2003631
  • 负责人:
  • 金额:
    $ 59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractOrganic materials capable of conducting electricity – termed organic semiconductors - are used in many emerging, next-generation technologies including organic light emitting diodes, organic-based solar cells, thermoelectrics, and chemical sensors. The benefits of organic semiconductors include lower cost, improved performance, flexibility, transparency, and lower environmental impact, but concerns persist about their long-term stability and lifetime. The focus of this project – degradation of functional properties – is a fundamental materials chemistry challenge that must be overcome to progress the field of organic electronic devices. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, the researchers advance the understanding of materials and chemical degradation pathways at a fundamental level, which will eventually facilitate development of new materials design criteria. Hence, this work provides important new insights that drive the creation of new molecules and polymers and contributes to long-term stability and technological relevance of the United States in printable electronic materials and devices. Support from the Solid State and Materials Chemistry program also advances the development of unique capabilities for in operando characterization of organic semiconductor systems that are readily translatable to other active materials chemistry applications and enable identification of the chemical pathways that accompany degradation in materials at length scales from microns to nanometers. This inherently interdisciplinary effort between chemists and engineers is a platform for interdisciplinary training for the graduate and undergraduate students engaged in research. New interdisciplinary graduate- and undergraduate-level laboratory experiences are developed through this effort, and the properties of this important class of materials are explored in K-to-gray public outreach efforts. Technical AbstractPush-pull or donor-acceptor-type molecular and polymeric architectures have become the dominant class of active materials in organic electronics with performance metrics superior to earlier molecular designs. However, little attention has been devoted to understanding long-term stability. This fundamental effort directly examines and compares chemical structure, electronic structure, and charge transport characteristics of complex push-pull organic semiconductor (OSC) architectures as a function of molecular building block composition to understand the chemical, photochemical and photophysical mechanistic origins and functional impacts of degradation. The secondary impact of this effort is formulation of new design criteria for more robust OSCs. This work builds on successful efforts through a previous NSF DMR award (DMR-1608289) in which a collaborative, multi-disciplinary investigation of organic semiconductor degradation was initiated. Previously-demonstrated approaches include surveying functional characteristics under conditions that lead to degradation, coupled with detailed spectroscopic analysis methodologies to understand mechanistic molecular origins. In this project, capabilities are expanded to include local physical structure with site-specific molecular and electronic imaging capabilities, which enables investigation of fundamental materials chemistry across length scales ranging from microns to nanometers. In addition to improving materials design for emerging technologies, the broader impacts of this work manifests through numerous education and outreach activities This collaboration between chemists and engineers is a platform for interdisciplinary training for the graduate and undergraduate students engaged in research. New interdisciplinary graduate- and undergraduate-level laboratory experiences are developed through this effort, and the properties and uses of this important class of materials are explained and explored in K-to-gray outreach efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要能够导电的有机材料(称为有机半导体)用于许多新兴的下一代技术,包括有机发光二极管、有机太阳能电池、热电和化学传感器。有机半导体的优点包括成本更低、性能提高、灵活性、透明度和环境影响更低,但对其长期稳定性和寿命的担忧仍然存在。该项目的重点是功能特性的退化,这是材料化学面临的一个基本挑战,必须克服这一挑战才能推动有机电子器件领域的发展。在材料研究部固态和材料化学项目的支持下,研究人员从根本上增进了对材料和化学降解途径的理解,这最终将促进新材料设计标准的制定。因此,这项工作提供了重要的新见解,推动新分子和聚合物的创造,并有助于美国在可印刷电子材料和设备方面的长期稳定性和技术相关性。固态和材料化学项目的支持还促进了有机半导体系统操作表征的独特能力的开发,这些能力很容易转化为其他活性材料化学应用,并能够识别伴随从微米到纳米长度尺度的材料降解的化学途径。化学家和工程师之间本质上的跨学科努力是为从事研究的研究生和本科生提供跨学科培训的平台。通过这一努力,开发了新的跨学科研究生和本科生水平的实验室经验,并在 K 到灰色的公共宣传工作中探索了这一类重要材料的特性。技术摘要推拉或供体-受体型分子和聚合物结构已成为有机电子产品中活性材料的主导类别,其性能指标优于早期的分子设计。然而,很少有人关注理解长期稳定性。这项基础工作直接检查和比较复杂推挽有机半导体 (OSC) 结构的化学结构、电子结构和电荷传输特性作为分子构件组成的函数,以了解化学、光化学和光物理机制起源以及降解的功能影响。 这项工作的次要影响是为更强大的 OSC 制定新的设计标准。 这项工作建立在之前获得 NSF DMR 奖 (DMR-1608289) 的成功努力的基础上,该奖项启动了有机半导体降解的协作、多学科研究。先前演示的方法包括调查导致降解的条件下的功能特征,并结合详细的光谱分析方法来了解机械分子起源。 在该项目中,功能扩展到包括具有特定位点分子和电子成像功能的局部物理结构,这使得能够在从微米到纳米的长度尺度上研究基础材料化学。除了改进新兴技术的材料设计之外,这项工作的更广泛影响还通过大量的教育和推广活动体现出来。化学家和工程师之间的合作为从事研究的研究生和本科生提供了跨学科培训的平台。通过这一努力,开发了新的跨学科研究生和本科生水平的实验室经验,并在 K-to-gray 推广工作中解释和探索了这一类重要材料的特性和用途。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling
  • DOI:
    10.1021/acsami.0c11809
  • 发表时间:
    2020-09-30
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Farahat, Mahmoud E.;Laventure, Audrey;Welch, Gregory C.
  • 通讯作者:
    Welch, Gregory C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeanne Pemberton其他文献

Jeanne Pemberton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeanne Pemberton', 18)}}的其他基金

CAS: Glyonic Liquids: Sugar-Based Ionic Liquids and Deep Eutectic Solvents from Sustainable Sources for Electrochemical Applications
CAS:糖基液体:来自可持续来源的糖基离子液体和低共熔溶剂,用于电化学应用
  • 批准号:
    1954467
  • 财政年份:
    2020
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
In Operando Characterization of Degradation Processes in Organic Semiconductor Materials
有机半导体材料降解过程的现场表征
  • 批准号:
    1608289
  • 财政年份:
    2016
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
NSMDS: Molecular Design, Synthesis and Characterization of Green Glycolipid Surfactants
NSMDS:绿色糖脂表面活性剂的分子设计、合成和表征
  • 批准号:
    1339597
  • 财政年份:
    2013
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Correlation of Molecular Architecture and Fluid Dynamic Properties within Solid-Fluid Interfaces
固-液界面内分子结构与流体动力学性质的相关性
  • 批准号:
    0848624
  • 财政年份:
    2009
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
CRC: Collaborative Research: Chemistry of Microbially-Produced Biosurfactants
CRC:合作研究:微生物生产的生物表面活性剂的化学
  • 批准号:
    0714245
  • 财政年份:
    2007
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
A Workshop on the Concept of Creating Undergraduate Research Centers in Chemistry; March 31-April 2, 2003; Arlington, VA
关于创建化学本科研究中心概念的研讨会;
  • 批准号:
    0315117
  • 财政年份:
    2003
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Characterization of Interfaces in Electrochemical Devices
电化学器件中界面的表征
  • 批准号:
    0317114
  • 财政年份:
    2003
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
A Workshop Exploring the Role of the Mathematical and Physical Sciences in Support of Basic Research Needs of the U.S. Intelligence Community
探讨数学和物理科学在支持美国情报界基础研究需求中的作用的研讨会
  • 批准号:
    0301254
  • 财政年份:
    2002
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Symposium: Celebrating Women in Analytical Chemistry (ACS); Boston, MA; August 18-22, 2002
研讨会:庆祝分析化学领域的女性 (ACS);
  • 批准号:
    0233831
  • 财政年份:
    2002
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Characterization of Interfaces in Electrochemical Devices
电化学器件中界面的表征
  • 批准号:
    0075813
  • 财政年份:
    2000
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant

相似海外基金

Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Magneto-Optical Organic Semiconductors with Spin Amplification (MOOS)
具有自旋放大功能的磁光有机半导体(MOOS)
  • 批准号:
    EP/Y002555/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59万
  • 项目类别:
    Research Grant
Development of near-ambient-pressure low energy inverse photoelectron spectroscopy and study on atmospheric and solvent effects on unoccupied states of n-type organic semiconductors.
近环境压力低能逆光电子能谱的发展以及大气和溶剂对n型有机半导体空位态影响的研究。
  • 批准号:
    23KJ0310
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Precise and quick prediction of electron conduction levels in organic semiconductors using machine learning
使用机器学习精确快速预测有机半导体中的电子传导水平
  • 批准号:
    23K17900
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Mitigating Detrimental Vibrational Effects in Organic Semiconductors
职业:减轻有机半导体中的有害振动影响
  • 批准号:
    2348765
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
Maximizing the Performance of Practical Transistors by Elucidating the Ordering Process of Organic Semiconductors
通过阐明有机半导体的订购过程,最大限度地提高实际晶体管的性能
  • 批准号:
    23KJ0396
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Computational and Experimental Studies Towards Ideal Organic Semiconductors for Perovskite Solar Cells
用于钙钛矿太阳能电池的理想有机半导体的计算和实验研究
  • 批准号:
    2308895
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
CAREER: Modulating Optoelectronic Properties and Functionality of Hybrid Organic-Inorganic Semiconductors by Controlling Lattice Strain with Molecular Interactions at Surfaces
职业:通过表面分子相互作用控制晶格应变来调节有机-无机杂化半导体的光电特性和功能
  • 批准号:
    2237211
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
Resonant tender X-ray scattering of organic semiconductors
有机半导体的共振X射线散射
  • 批准号:
    DP230100170
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Discovery Projects
High-throughput search for doped crystalline organic semiconductors and their application to organic transistors
高通量寻找掺杂晶体有机半导体及其在有机晶体管中的应用
  • 批准号:
    22H01931
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了