Degradation of Organic Semiconductors: Functional and Mechanistic Descriptions from Macroscale to Nanoscale
有机半导体的降解:从宏观到纳米尺度的功能和机理描述
基本信息
- 批准号:2003631
- 负责人:
- 金额:$ 59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical AbstractOrganic materials capable of conducting electricity – termed organic semiconductors - are used in many emerging, next-generation technologies including organic light emitting diodes, organic-based solar cells, thermoelectrics, and chemical sensors. The benefits of organic semiconductors include lower cost, improved performance, flexibility, transparency, and lower environmental impact, but concerns persist about their long-term stability and lifetime. The focus of this project – degradation of functional properties – is a fundamental materials chemistry challenge that must be overcome to progress the field of organic electronic devices. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, the researchers advance the understanding of materials and chemical degradation pathways at a fundamental level, which will eventually facilitate development of new materials design criteria. Hence, this work provides important new insights that drive the creation of new molecules and polymers and contributes to long-term stability and technological relevance of the United States in printable electronic materials and devices. Support from the Solid State and Materials Chemistry program also advances the development of unique capabilities for in operando characterization of organic semiconductor systems that are readily translatable to other active materials chemistry applications and enable identification of the chemical pathways that accompany degradation in materials at length scales from microns to nanometers. This inherently interdisciplinary effort between chemists and engineers is a platform for interdisciplinary training for the graduate and undergraduate students engaged in research. New interdisciplinary graduate- and undergraduate-level laboratory experiences are developed through this effort, and the properties of this important class of materials are explored in K-to-gray public outreach efforts. Technical AbstractPush-pull or donor-acceptor-type molecular and polymeric architectures have become the dominant class of active materials in organic electronics with performance metrics superior to earlier molecular designs. However, little attention has been devoted to understanding long-term stability. This fundamental effort directly examines and compares chemical structure, electronic structure, and charge transport characteristics of complex push-pull organic semiconductor (OSC) architectures as a function of molecular building block composition to understand the chemical, photochemical and photophysical mechanistic origins and functional impacts of degradation. The secondary impact of this effort is formulation of new design criteria for more robust OSCs. This work builds on successful efforts through a previous NSF DMR award (DMR-1608289) in which a collaborative, multi-disciplinary investigation of organic semiconductor degradation was initiated. Previously-demonstrated approaches include surveying functional characteristics under conditions that lead to degradation, coupled with detailed spectroscopic analysis methodologies to understand mechanistic molecular origins. In this project, capabilities are expanded to include local physical structure with site-specific molecular and electronic imaging capabilities, which enables investigation of fundamental materials chemistry across length scales ranging from microns to nanometers. In addition to improving materials design for emerging technologies, the broader impacts of this work manifests through numerous education and outreach activities This collaboration between chemists and engineers is a platform for interdisciplinary training for the graduate and undergraduate students engaged in research. New interdisciplinary graduate- and undergraduate-level laboratory experiences are developed through this effort, and the properties and uses of this important class of materials are explained and explored in K-to-gray outreach efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多新兴的下一代技术,包括有机光发射,有机太阳能电池,热电学和化学传感器,使用了能够进行电力有机半导体的非技术抽象材料。有机半导体的好处包括较低的成本,提高性能,灵活性,透明度和较低的环境影响,但担心它们的长期稳定性和寿命。该项目的重点 - 功能性能的退化 - 是一个基本的材料化学挑战,必须克服有机电子设备领域。在材料研究部固态和材料化学计划的支持下,研究人员在基本水平上提高了对材料和化学降解途径的理解,最终将促进新材料设计标准的发展。因此,这项工作提供了重要的新见解,可推动新分子和聚合物的创建,并有助于美国在可打印的电子材料和设备上的长期稳定性和技术相关性。固态和材料化学计划的支持还推动了有机半导体系统的操作表征的独特功能的发展,这些功能很容易被转换为其他活性材料化学应用,并能够鉴定化学途径,这些化学途径可容纳从微米到纳米计的长度尺度上的材料降解。化学家与工程师之间固有的跨学科工作是为研究生和本科生从事研究的跨学科培训的平台。通过这项工作开发了新的跨学科研究生和本科实验室的经验,并且在K到绿色的公共外展工作中探索了这种重要材料的特性。技术摘要Push-Pull或供体型分子和聚合物体系结构已成为有机电子中的主要活性材料类别,其性能指标优于早期分子设计。但是,很少关注理解长期稳定性。这项基本努力直接研究并比较了复杂的推杆有机半导体(OSC)结构的化学结构,电子结构和电荷传输特性,这是分子构图组成的函数,以了解化学,光化学和光学物理机械起源以及脱机的功能影响。这项工作的次要影响是针对更健壮的OSC的新设计标准制定的。这项工作以先前的NSF DMR奖(DMR-1608289)为基础,在该奖项中,对有机半导体退化进行了合作的,多学科的调查。先前示威的方法包括在导致降解的条件下进行测量功能特征,再加上详细的光谱分析方法,以了解机械分子起源。在该项目中,功能将扩展到具有特定位点特异性分子和电子成像能力的局部物理结构,从而使基本材料化学能够在从微米到纳米的长度范围内投资。除了改进新兴技术的材料设计外,这项工作的更广泛影响通过众多教育和外展活动表现出这种化学家与工程师之间的合作是为研究生和研究生从事研究的跨学科培训的平台。通过这项工作开发了新的跨学科研究生和本科实验室的实验室经验,并且在K到彩色的外展工作中对这种重要材料的特性和用途进行了解释和探索。该奖项反映了NSF的法定任务,并通过评估该基金会的智力功能和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical Spectroscopy of Surfaces, Interfaces, and Thin Films
- DOI:10.1021/acs.analchem.1c05323
- 发表时间:2022-01-01
- 期刊:
- 影响因子:7.4
- 作者:Blackburn, Thomas J.;Tyler, Sarah M.;Pemberton, Jeanne E.
- 通讯作者:Pemberton, Jeanne E.
Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling
- DOI:10.1021/acsami.0c11809
- 发表时间:2020-09-30
- 期刊:
- 影响因子:9.5
- 作者:Farahat, Mahmoud E.;Laventure, Audrey;Welch, Gregory C.
- 通讯作者:Welch, Gregory C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeanne Pemberton其他文献
Jeanne Pemberton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeanne Pemberton', 18)}}的其他基金
CAS: Glyonic Liquids: Sugar-Based Ionic Liquids and Deep Eutectic Solvents from Sustainable Sources for Electrochemical Applications
CAS:糖基液体:来自可持续来源的糖基离子液体和低共熔溶剂,用于电化学应用
- 批准号:
1954467 - 财政年份:2020
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
In Operando Characterization of Degradation Processes in Organic Semiconductor Materials
有机半导体材料降解过程的现场表征
- 批准号:
1608289 - 财政年份:2016
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
NSMDS: Molecular Design, Synthesis and Characterization of Green Glycolipid Surfactants
NSMDS:绿色糖脂表面活性剂的分子设计、合成和表征
- 批准号:
1339597 - 财政年份:2013
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Correlation of Molecular Architecture and Fluid Dynamic Properties within Solid-Fluid Interfaces
固-液界面内分子结构与流体动力学性质的相关性
- 批准号:
0848624 - 财政年份:2009
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
CRC: Collaborative Research: Chemistry of Microbially-Produced Biosurfactants
CRC:合作研究:微生物生产的生物表面活性剂的化学
- 批准号:
0714245 - 财政年份:2007
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
A Workshop on the Concept of Creating Undergraduate Research Centers in Chemistry; March 31-April 2, 2003; Arlington, VA
关于创建化学本科研究中心概念的研讨会;
- 批准号:
0315117 - 财政年份:2003
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Characterization of Interfaces in Electrochemical Devices
电化学器件中界面的表征
- 批准号:
0317114 - 财政年份:2003
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
Symposium: Celebrating Women in Analytical Chemistry (ACS); Boston, MA; August 18-22, 2002
研讨会:庆祝分析化学领域的女性 (ACS);
- 批准号:
0233831 - 财政年份:2002
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
A Workshop Exploring the Role of the Mathematical and Physical Sciences in Support of Basic Research Needs of the U.S. Intelligence Community
探讨数学和物理科学在支持美国情报界基础研究需求中的作用的研讨会
- 批准号:
0301254 - 财政年份:2002
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Characterization of Interfaces in Electrochemical Devices
电化学器件中界面的表征
- 批准号:
0075813 - 财政年份:2000
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
相似国自然基金
“尼龙毛刷”状Fe3O4/CNTs/ZnO/Cu2O复合光催化剂的制备及可见光下深度降解有机磷农药的性能和机制研究
- 批准号:61705079
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
贱金属游离超薄膜的仿生合成及其与窄带半导体纳米柱的交替组装和可见光催化降解有机污染物研究
- 批准号:51771138
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
高性能的g-C3N4/铁基金属有机骨架化合物的复合光催化材料(g-C3N4/Fe-MOFs)的合成、结构与性能关系的研究
- 批准号:21771032
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
新型可见光响应的硫属半导体的设计及其降解放射性有机污染物废液研究
- 批准号:21671160
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
可见光半导体/介孔壁钛纳米管复合光催化剂对重金属-难降解有机物复合污染的协同控制及机制研究
- 批准号:21577039
- 批准年份:2015
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Magneto-Optical Organic Semiconductors with Spin Amplification (MOOS)
具有自旋放大功能的磁光有机半导体(MOOS)
- 批准号:
EP/Y002555/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Research Grant
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Development of near-ambient-pressure low energy inverse photoelectron spectroscopy and study on atmospheric and solvent effects on unoccupied states of n-type organic semiconductors.
近环境压力低能逆光电子能谱的发展以及大气和溶剂对n型有机半导体空位态影响的研究。
- 批准号:
23KJ0310 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Precise and quick prediction of electron conduction levels in organic semiconductors using machine learning
使用机器学习精确快速预测有机半导体中的电子传导水平
- 批准号:
23K17900 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)