Quandle theory and surface-link invariants

Quandle 理论和表面链接不变量

基本信息

  • 批准号:
    23840040
  • 负责人:
  • 金额:
    $ 2.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2012
  • 项目状态:
    已结题

项目摘要

In this research, we gave the following results: (1) We gave an evaluation for the minimum number of colors for surface-knots. (2) We defined a G-family of quandles, and constructed an invariant for handlebody-knots. (3) We researched about the colorability with linear Alexander quandles. (4) We showed that rack colorings are invariant for 2-knots.
在本研究中,我们给出了以下结果:(1)给出了曲面结点的最小颜色数的估计。(2)定义了Quandles的G-族,并构造了手体节的不变量。(3)对线性Alexander Quandles的着色性进行了研究。(4)证明了齿条色对于2-节是不变的。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pallets and coloring invariants for spatial graphs
空间图的托盘和着色不变量
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeonhee Jang;Kanako Oshiro;K. Nakazato;Kanako Oshiro
  • 通讯作者:
    Kanako Oshiro
Minimal numbers of colors for surface-knots and quandle cocycle invariants
表面结和双循环不变量的最小颜色数
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Hishida;K. Ohbayashi;M. Kobata;E. Ikenaga;T. Sugiyama;K. Kobayashi;M. Okawa;and T. Saitoh;K. Nakazato;Kanako Oshiro;M. Okawa;H. Suzuki;大城佳奈子;Masatoshi Takano;今隆助;大川万里生;大城佳奈子
  • 通讯作者:
    大城佳奈子
2次元結び目のラック 彩色数について
2D结架关于色数
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanako Oshiro
  • 通讯作者:
    Kanako Oshiro
On rack colorings for surface-knot diagrams without branch points
没有分支点的表面结图的架上着色
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Oshiro Kanako;Kokoro Tanaka
  • 通讯作者:
    Kokoro Tanaka
Minimal number of colors for surface-knots and quandle cocycle invariants
表面结和四周循环不变量的最小颜色数
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R.Yoshida;M.Okawa;他;Taro Matsuo et al.;高橋博之;Kanako Oshiro
  • 通讯作者:
    Kanako Oshiro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OSHIRO Kanako其他文献

OSHIRO Kanako的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

曲面結び目のプラット表示に関する分類問題とその応用
弯曲结平面表示的分类问题及其应用
  • 批准号:
    22KJ2189
  • 财政年份:
    2023
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
曲面結び目のリスト作成と仮想結び目の不変量の研究
创建表面结列表并研究虚拟结的不变量
  • 批准号:
    22K03287
  • 财政年份:
    2022
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
曲面ダイアグラムを用いた曲面結び目・特異曲面結び目の新たな不変量の開発とその応用
使用曲面图开发曲面结和奇异曲面结的新不变量及其应用
  • 批准号:
    22K13917
  • 财政年份:
    2022
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
カンドル代数と曲面結び目理論
Candl 代数和表面结理论
  • 批准号:
    21K03220
  • 财政年份:
    2021
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
曲面結び目の射影図による構成と不変量による分類の研究
利用投影图研究曲面结的组成和利用不变量进行分类
  • 批准号:
    19K03466
  • 财政年份:
    2019
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
カンドルおよびバイカンドルを用いた結び目と曲面結び目の研究
使用蜡烛和双蜡烛研究结和弯曲结
  • 批准号:
    15F15319
  • 财政年份:
    2015
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
曲面結び目の不変量とバイカンドル
表面结和双烛光的不变量
  • 批准号:
    13J01512
  • 财政年份:
    2013
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
曲面結び目と曲面ブレイドに関する研究
弯曲结和弯曲辫子的研究
  • 批准号:
    12J09014
  • 财政年份:
    2012
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
カンドルと分岐被覆を用いた曲面結び目,低次元多様体の位相不変量
使用蜡烛和分叉盖的表面结、低维流形的拓扑不变量
  • 批准号:
    09J40061
  • 财政年份:
    2009
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
4次元多様体と曲面結び目の特異点論的研究
4维流形和表面结的奇点理论研究
  • 批准号:
    04J06514
  • 财政年份:
    2004
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了