A combinatory microfluidic and in vivo modeling approach to evaluate collective migration during retinogenesis

一种组合微流体和体内建模方法来评估视网膜发生过程中的集体迁移

基本信息

  • 批准号:
    2017965
  • 负责人:
  • 金额:
    $ 28.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-23 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The coordinated migration of groups of cells is a central element of tissue development as well as of stem cell-based repair in the nervous system. In an idealized model, stem-like cells (STLCs) are introduced into a damaged tissue and migrate collectively, as one unit, toward precise injury sites to reestablish neuronal connectivity. In truth, the effects of cues from a cell's genetic makeup and its external environment on collective migration have been only partially explored. The developing retina provides a unique opportunity for quantitative study of collective migration to support the natural development of vision. As the signaling cues that guide retinal development are surprisingly similar among different species, the common fruit fly (Drosophila melanogaster) provides a simple yet excellent model to study this phenomenon. The study of how STLCs naturally migrate to initiate or re-initiate connectivity of the neurons with the retina will greatly deepen our understanding of retinal development and could greatly advance therapies to restore vision. Educational efforts will develop opportunities for undergraduates to teach and mentor summer high school students in retinal research by establishing integrated course modules that engage student teams in device prototyping, design innovation and cell-based laboratory experiments.This project will evaluate the collective migration of STLCs using in vivo genetics to regulate intracellular Fibroblast Growth Factor Receptor (FGF-R) signaling in Drosophila melanogaster (as a model) and microfluidic systems to control extrinsic FGF environments. The study is motived by knowledge that FGF signaling pathways in the Drosophila model are known to mediate the neural migration needed to initiate vision via the optic stalk, but it is not clear if FGF-R regulation alone is sufficient. The system will facilitate genetically-controlled study of FGF-R-mediated chemotaxis with micrometer resolution in tandem with quantitative study of the intercellular signaling needed to preserve spatial cohesion across motile STLC collectives (cell-cell adhesion via innexin-1). The Research Plan is organized under 3 aims. AIM 1 will develop a microfluidic model of the retinal optic stalk (the portion of the developing retina between the Drosophila Brain Lobe and the Eye Imaginal Disc) to generate controlled, extrinsic FGF fields. Experiments will prototype an in vitro system on the scale of the Drosophila retina and develop an analytical model (Finite Element simulation) to describe concentration gradient fields therein. Characteristics of collective in vitro migration will be evaluated by targeted, quantitative parameters. AIM 2 will examine the collective migration of glial and neuronal cells expressing genetically-modified elements of FGF-R, i.e., cells with and without functional receptors. Genetic FGF-R alteration will be used to experimentally determine contribution of FGF-R to the size of motile collectives as well as their neural composition and cell-cell adhesion within the microfluidic system. AIM 3 will evaluate in vivo retinal formation using genetically modified FGF-R glial and neuronal collectives. The specific role for FGF-R during collective migration in vivo will be studied by examining retinogenesis using neural collectives lacking FGF-R function.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞群的协调迁移是组织发育以及神经系统中基于干细胞的修复的核心要素。在理想化模型中,干细胞样细胞(STLC)被引入受损组织,并作为一个整体集体迁移到精确的损伤部位,以重建神经元连接。事实上,细胞基因构成及其外部环境对集体迁移的影响仅得到部分探索。正在发育的视网膜为集体迁移的定量研究提供了独特的机会,以支持视力的自然发展。 由于不同物种之间指导视网膜发育的信号线索惊人地相似,常见的果蝇(Drosophila melanogaster)为研究这种现象提供了一个简单而优秀的模型。 对 STLC 如何自然迁移以启动或重新启动神经元与视网膜的连接的研究将极大地加深我们对视网膜发育的理解,并可能极大地推进恢复视力的治疗。教育工作将为本科生提供机会,通过建立综合课程模块,让学生团队参与设备原型设计、设计创新和基于细胞的实验室实验,为本科生教授和指导暑期高中生进行视网膜研究。该项目将评估 STLC 的集体迁移,利用体内遗传学调节果蝇细胞内成纤维细胞生长因子受体 (FGF-R) 信号传导 (作为模型)和微流体系统来控制外在 FGF 环境。这项研究的动机是,已知果蝇模型中的 FGF 信号通路可介导通过视柄启动视觉所需的神经迁移,但尚不清楚仅 FGF-R 调节是否足够。 该系统将促进以微米分辨率对 FGF-R 介导的趋化性进行基因控制研究,同时对保持运动 STLC 集体之间的空间凝聚力(通过 innexin-1 进行细胞间粘附)所需的细胞间信号传导进行定量研究。该研究计划有 3 个目标。 AIM 1 将开发视网膜视柄(果蝇脑叶和眼成象盘之间正在发育的视网膜部分)的微流体模型,以生成受控的外在 FGF 场。 实验将建立果蝇视网膜规模的体外系统原型,并开发分析模型(有限元模拟)来描述其中的浓度梯度场。集体体外迁移的特征将通过有针对性的定量参数进行评估。 AIM 2 将检查表达 FGF-R 基因修饰元件的神经胶质细胞和神经元细胞(即具有或不具有功能受体的细胞)的集体迁移。 遗传性 FGF-R 改变将用于通过实验确定 FGF-R 对运动集合体大小及其神经组成和微流体系统内细胞间粘附的贡献。 AIM 3 将使用转基因 FGF-R 胶质细胞和神经元集合来评估体内视网膜形成。 FGF-R 在体内集体迁移过程中的具体作用将通过使用缺乏 FGF-R 功能的神经集体检查视网膜发生来研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teaching Tips To Enrich Remote Student Engagement in Transport Phenomena Using a Hybrid Teaching and Assessment Model
使用混合教学和评估模型丰富远程学生对交通现象的参与的教学技巧
  • DOI:
    10.1007/s43683-020-00002-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vazquez, Maribel
  • 通讯作者:
    Vazquez, Maribel
Collective behaviors of Drosophila-derived retinal progenitors in controlled microenvironments
受控微环境中果蝇来源的视网膜祖细胞的集体行为
  • DOI:
    10.1371/journal.pone.0226250
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Pena, Caroline D.;Zhang, Stephanie;Markey, Miles;Venkatesh, Tadmiri;Vazquez, Maribel;Han, Jongyoon
  • 通讯作者:
    Han, Jongyoon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maribel Vazquez其他文献

Chemotactic Migration of Clustered Central Nervous System Progenitor Cells
中枢神经系统祖细胞簇的趋化迁移
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean McCutcheon;John Uchenna Unachukwu;S. Redenti;Maribel Vazquez
  • 通讯作者:
    Maribel Vazquez
Perspectives on disparities in scientific visibility
关于科学可见性差异的观点
  • DOI:
    10.1038/s41578-021-00329-5
  • 发表时间:
    2021-06-03
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Tejal A. Desai;Omolola Eniola-Adefeso;Kelly R. Stevens;Maribel Vazquez;Princess Imoukhuede
  • 通讯作者:
    Princess Imoukhuede
Estradiol impacts Müller glia and endothelial cell responses in hyperglycemic microenvironments with advanced glycation end products
  • DOI:
    10.1016/j.exer.2024.110185
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Natalia Castro;Juan S. Peña;Richard Cliver;François Berthiaume;Maribel Vazquez
  • 通讯作者:
    Maribel Vazquez
Migration and Invasion of Brain Tumors
脑肿瘤的迁移和侵袭
Electro-chemotactic stimuli for cell replacement therapy in neurosensory retina
神经感觉视网膜细胞替代疗法的电化学刺激

Maribel Vazquez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maribel Vazquez', 18)}}的其他基金

A glial-endothelial model to examine collective regulation of transport across the retina
用于检查视网膜运输集体调节的神经胶质内皮模型
  • 批准号:
    2243644
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
A combinatory microfluidic and in vivo modeling approach to evaluate collective migration during retinogenesis
一种组合微流体和体内建模方法来评估视网膜发生过程中的集体迁移
  • 批准号:
    1804411
  • 财政年份:
    2018
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
SENSORS: Cell-Based Sensors that link Nanotechnology with Microfluidics
传感器:将纳米技术与微流体联系起来的基于细胞的传感器
  • 批准号:
    0428573
  • 财政年份:
    2004
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
NER: Intracellular Regulation via Multivalent Nanoprobes
NER:通过多价纳米探针进行细胞内调节
  • 批准号:
    0403971
  • 财政年份:
    2004
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于压力敏感肾单位微流控芯片的肾上皮细胞CAT1-mTOR通路在梗阻性肾损伤中的作用机制研究
  • 批准号:
    82370678
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于RPA-microfluidic chip技术高效诊断侵袭性真菌病的研究
  • 批准号:
    2020A151501763
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
利用Microfluidic系统研究血流速度对巨核细胞生成血小板的信号调控机制
  • 批准号:
    81770131
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Roles of mRNA Transfer in Cancer Cell-Platelet Communication
mRNA 转移在癌细胞-血小板通讯中的作用
  • 批准号:
    10748535
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Precision Apheresis: stem cell isolation from patients with sickle cell disease for gene therapy using high-throughput microfluidics
精密血浆分离术:使用高通量微流控技术从镰状细胞病患者中分离干细胞进行基因治疗
  • 批准号:
    10723247
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
An Anticoagulation-Free Artificial Placenta Device
一种免抗凝人工胎盘装置
  • 批准号:
    10741704
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
The mechanics of host cell repopulation of engineered tissues
工程组织的宿主细胞再生机制
  • 批准号:
    10580269
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Elucidating the contribution of amyloidogenic APP processing to AD-relevant impaired synaptic protein turnover
阐明淀粉样蛋白生成 APP 加工对 AD 相关突触蛋白周转受损的影响
  • 批准号:
    10538032
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
I-Corps: Microfluidic chamber for ex-vivo tissue electrophysiology
I-Corps:用于离体组织电生理学的微流体室
  • 批准号:
    2330705
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Elucidating the Trophic Support of Long Axons by Metabolic Signaling in Oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
  • 批准号:
    10782630
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
  • 批准号:
    10698810
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Phenotypic sorting of cancer cells to study the role and control of cell stiffness in the in vivo metastatic cascade
对癌细胞进行表型分选,研究细胞硬度在体内转移级联中的作用和控制
  • 批准号:
    10679871
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了