RAPID: Prediction of Cardiac Dysfunction in COVID-19 Patients Using Machine Learning
RAPID:使用机器学习预测 COVID-19 患者的心脏功能障碍
基本信息
- 批准号:2029603
- 负责人:
- 金额:$ 19.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent reports demonstrate the critical influence of COVID-19 on the cardiovascular system, with up to 20% of COVID-19 patients suffering acute cardiac injury. Approaches to identify COVID-19 patients at risk for cardiac dysfunction have not yet been developed, and no alerting clinical parameters are available to address the impending decline of cardiac function and mortality. The goal of this project is to develop a machine learning approach to identify COVID-19 patients at risk for cardiac dysfunction and sudden cardiac death. Utilizing such an approach will provide early warning and enable the delivery of early goal-directed therapy, reducing mortality and optimizing allocation of resources. The machine learning classifier is to be distributed to any interested healthcare institution, to augment their ability to successfully treat patients. This project also provides fundamental new scientific knowledge: how COVID-19-related cardiac injury could result in cardiac dysfunction and sudden cardiac death. Such knowledge is of paramount importance in the fight against COVID-19 and the post-disease adverse effects on human health. Features that will serve as input into the machine learning classifier will be extracted from both time series (ECG, cardiac-specific laboratory values, continuously-obtained vital signs) and imaging data (CT, echocardiography). Data will be collected from patients admitted to Johns Hopkins Hospital and Johns Hopkins Health System; other hospitals in the Chesapeake area; and potetially hospitals in NYC, with a confirmed diagnosis of COVID-19 based on nucleic acid or polymerase chain reaction testing. We will develop a time-varying risk score that will determine the posterior probability of hemodynamically-significant cardiac disease outcome within 24 hours of certain time points. For new patients, the model will be used to perform a baseline prediction which will be updated in a Bayesian fashion each time new data becomes available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的报告显示,COVID-19对心血管系统的影响至关重要,高达20%的COVID-19患者患有急性心脏损伤。目前尚未开发出识别有心功能障碍风险的COVID-19患者的方法,也没有可用于应对即将到来的心脏功能下降和死亡率的预警临床参数。该项目的目标是开发一种机器学习方法,以识别有心功能障碍和心源性猝死风险的COVID-19患者。利用这种方法将提供早期预警,并能够提供早期目标导向治疗,降低死亡率和优化资源分配。机器学习分类器将分发给任何感兴趣的医疗机构,以增强他们成功治疗患者的能力。该项目还提供了基本的新科学知识:COVID-19相关的心脏损伤如何导致心脏功能障碍和心源性猝死。有关知识对抗击COVID-19及疫后对人类健康的不利影响至关重要。将从时间序列(ECG、心脏特定实验室值、连续获得的生命体征)和成像数据(CT、超声心动图)中提取将作为机器学习分类器输入的特征。数据将收集自约翰霍普金斯医院和约翰霍普金斯卫生系统、切萨皮克地区的其他医院以及纽约市的潜在医院,根据核酸或聚合酶链反应检测确诊为COVID-19的患者。我们将制定一个随时间变化的风险评分,以确定某些时间点24小时内血液动力学显著性心脏病结局的后验概率。对于新患者,该模型将用于执行基线预测,每次获得新数据时,该预测将以贝叶斯方式更新。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalia Trayanova其他文献
Risk of Arrhythmic Death in Patients With Nonischemic Cardiomyopathy: emJACC/em Review Topic of the Week
非缺血性心肌病患者心律失常性死亡的风险:emJACC/em 本周综述主题
- DOI:
10.1016/j.jacc.2023.05.064 - 发表时间:
2023-08-22 - 期刊:
- 影响因子:22.300
- 作者:
Jonathan Chrispin;Faisal M. Merchant;Neal K. Lakdawala;Katherine C. Wu;Gordon F. Tomaselli;Rachita Navara;Estelle Torbey;Amrut V. Ambardekar;Rajesh Kabra;Eloisa Arbustini;Jagat Narula;Maya Guglin;Christine M. Albert;Sumeet S. Chugh;Natalia Trayanova;Jim W. Cheung - 通讯作者:
Jim W. Cheung
From genetics to smart watches: developments in precision cardiology
从遗传学到智能手表:精密心脏病学的发展
- DOI:
10.1038/s41569-018-0149-y - 发表时间:
2018-12-19 - 期刊:
- 影响因子:44.200
- 作者:
Natalia Trayanova - 通讯作者:
Natalia Trayanova
Beta-Adrenergic Stimulation Alters Both ion Channel Currents and Functional Refractory Period to Steepen Action Potential Duration Restitution in Persistent Atrial Fibrillation
- DOI:
10.1016/j.bpj.2010.12.2563 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Jason D. Bayer;David E. Krummen;Sanjiv M. Narayan;Natalia Trayanova - 通讯作者:
Natalia Trayanova
Cardiovascular imaging techniques for electrophysiologists
电生理学家的心血管成像技术
- DOI:
10.1038/s44161-025-00648-8 - 发表时间:
2025-05-13 - 期刊:
- 影响因子:10.800
- 作者:
Albert J. Rogers;Olga Reynbakh;Adnan Ahmed;Mina K. Chung;Rishi Charate;Hirad Yarmohammadi;Rakesh Gopinathannair;Hassan Khan;Dhanunjaya Lakkireddy;Miguel Leal;Uma Srivatsa;Natalia Trayanova;Elaine Y. Wan - 通讯作者:
Elaine Y. Wan
Lipomatous Metaplasia Facilitates Ventricular Tachycardia in Patients With Nonischemic Cardiomyopathy
脂肪化生促进非缺血性心肌病患者室性心动过速
- DOI:
10.1016/j.jacep.2024.07.017 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:7.700
- 作者:
Lingyu Xu;Mirmilad Khoshknab;Juwann Moss;Lauren C. Yang;Ronald D. Berger;Jonathan Chrispin;David Callans;Francis E. Marchlinski;Stefan L. Zimmerman;Yuchi Han;Natalia Trayanova;Walter R. Witschey;Benoit Desjardins;Saman Nazarian - 通讯作者:
Saman Nazarian
Natalia Trayanova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natalia Trayanova', 18)}}的其他基金
Mechanically-Induced Spontaneous Arrhythmias in Acute Regional Ischemia
急性局部缺血时机械诱发的自发性心律失常
- 批准号:
0933029 - 财政年份:2010
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
2009 Cardiac Arrhythmia Mechanisms Gordon Research Conference
2009年心律失常机制戈登研究会议
- 批准号:
0904349 - 财政年份:2009
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
Shock-Induced Arrhythmogenesis in Regional Myocardial Ischemia
局部心肌缺血中电击诱发的心律失常
- 批准号:
0601935 - 财政年份:2006
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
Shock-Induced Arrhythmogenesis in Regional Myocardial Ischemia
局部心肌缺血中电击诱发的心律失常
- 批准号:
0703498 - 财政年份:2006
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
GOALI: ICD Transvenous Lead Placement: An Active Bidomain Heart/Torso Simulation Study of Defibrillation Efficacy
GOALI:ICD 经静脉引线置入:除颤功效的主动双域心脏/躯干模拟研究
- 批准号:
9809132 - 财政年份:1998
- 资助金额:
$ 19.56万 - 项目类别:
Continuing Grant
Travel to the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 31-November 3, 1996, Amsterdam, The Netherlands
前往 1996 年 10 月 31 日至 11 月 3 日在荷兰阿姆斯特丹举行的第 18 届 IEEE 医学和生物学工程协会国际年会
- 批准号:
9617777 - 财政年份:1996
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
相似海外基金
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
- 批准号:
10734438 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Artificial Intelligence Supported In-Hospital Cardiac Arrest Prediction, Prevention, and Management
人工智能支持院内心脏骤停预测、预防和管理
- 批准号:
489670 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Operating Grants
Development of a novel risk prediction tool for risk of major adverse cardiac events among patients with chest pain who have had myocardial infarction ruled out in the Emergency Department
开发一种新型风险预测工具,用于预测在急诊科排除心肌梗死的胸痛患者发生主要不良心脏事件的风险
- 批准号:
488809 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Operating Grants
Research on Prediction of Cardiac Disease Outcomes Using Multi-Modal Data Integration Approach Artificial Intelligence
利用多模态数据集成方法人工智能预测心脏病结果的研究
- 批准号:
23K15152 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploratory analysis for prognosis prediction methods using cardiac biomarkers in patients with coronavirus disease 2019 (COVID-19)
使用心脏生物标志物对 2019 年冠状病毒病(COVID-19)患者的预后预测方法进行探索性分析
- 批准号:
22K16124 - 财政年份:2022
- 资助金额:
$ 19.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integrating computational chemistry models of ion channels to build a holistic cardiac safety prediction tool for drug discovery
整合离子通道的计算化学模型,构建用于药物发现的整体心脏安全预测工具
- 批准号:
2779681 - 财政年份:2022
- 资助金额:
$ 19.56万 - 项目类别:
Studentship
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10600023 - 财政年份:2022
- 资助金额:
$ 19.56万 - 项目类别:
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10337430 - 财政年份:2022
- 资助金额:
$ 19.56万 - 项目类别:
AI-assisted Imaging and Prediction of Cardiac Arrhythmia Origins using 4D Ultrasound
使用 4D 超声进行人工智能辅助成像和心律失常起源预测
- 批准号:
10473146 - 财政年份:2022
- 资助金额:
$ 19.56万 - 项目类别:
The BEACONS Platform - Comprehensive biomarker analysis for prediction of clinical course and management in acute coagulopathy in sepsis, trauma, cardiac arrest, and COVID-19
BEACONS 平台 - 综合生物标志物分析,用于预测脓毒症、创伤、心脏骤停和 COVID-19 急性凝血病的临床病程和管理
- 批准号:
454967 - 财政年份:2021
- 资助金额:
$ 19.56万 - 项目类别:
Fellowship Programs