EAGER Collaborative Research: Fundamentals of Tunneling, Heterojunction-based 2D-Hot Electron Transistors
EAGER 协作研究:隧道、异质结二维热电子晶体管的基础知识
基本信息
- 批准号:2029729
- 负责人:
- 金额:$ 6.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical:Heterojunction bipolar transistors based on the gallium nitride/aluminum gallium nitride {(Al,Ga)N} system have long been of interest for compact high frequency power devices for telecommunications and sensing. These devices are difficult to realize due to the inability to produce a thin, highly conductive base layer that is essential for high current gain and frequency of operation. Hot electron transistors (HETs) could circumvent this problem. Carrier transport in HETs occurs via the injection of hot electrons from an emitter to a collector modulated by a base electrode. An ultra-thin base is needed to enable ultra-short transit time for high performance. Atomically thin 2D materials such as transition metal dichalcogenides are ideal materials to serve as the base electrode in a HET. This will, however, require incorporating the 2D base layer within the nitride heterostructure while retaining high quality interfaces. Previous studies have used layer transfer methods to incorporate 2D layers in HETs, but this approach introduces interfacial impurities and is difficult to scale to large areas. This project will focus instead on direct epitaxial growth of ultra-thin TMD base layers on an (Al,Ga)N collector via metal organic chemical vapor deposition along with the use of ultra-wide bandgap hexagonal boron nitiride as the emitter layer. Fundamental issues concerning the epitaxial growth, material characterization and current transport will be investigated in a step-wise process focusing on the emitter-base and base-collector interfaces. This will provide insight into the overall HET device performance and suggestions for further optimization. Research outcomes will be incorporated into undergraduate and graduate course curriculum. The project will also provide research opportunities for undergraduates and high school students from diverse backgrounds.Technical:A Two-Dimensional (2D) layer base Hot Electron Transistor (HET) is proposed for overcoming the difficulties faced by III-Nitride-based Heterojunction Bipolar Transistors (HBTs). These are severely handicapped in demonstrating good electrical characteristics due to the limited doping values of their base. The 2D layer used in the transistor base will lead to low base resistance due to its high electrical conductivity while an ultrathin base should allow the electron carriers injected into it to travel without transit time limitations. 2D transition metal dichalcogenides (TMDs) such as WS2 and WSe2, which are nearly lattice-matched to GaN and AlGaN collectors will be explored for the base. To avoid introduction of interfacial impurities and the difficulties involved in scaling to large areas commonly encountered in 2D layer transfer techniques, the research will focus on direct growth by Metalorganic Chemical Vapor Deposition (MOCVD). This will be employed for growth of Hexagonal Boron Nitride (hBN) emitters and TMD monolayer and few-layer base films on Aluminum Gallium Nitride ((Al,Ga)N) collectors. It will also allow high quality 2D/nitride interfaces. The studies will allow understanding of the role of surface energy, lattice mismatch and defects on the nucleation and epitaxial growth of 2D films on (Al,Ga)N, as well as defects at the interfaces and their correlation to material properties and growth. Basic material and device blocks will be investigated to gain good understanding of the fundamentals of growth and transport mechanisms and allow optimization of HETs. Of major importance is the understanding of current transport through the various layers leading to HET devices and their optimization. The knowledge obtained from the project will impact the fields of telecommunications and sensing thereby contributing to improving quality of life. Educational/outreach activities will be targeted at graduate, undergraduate and high school students as well as K-12 and the public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:基于氮化镓/氮化铝镓{(Al,Ga)N}系统的异质结双极晶体管长期以来一直对用于电信和传感的紧凑型高频功率器件感兴趣。由于无法产生对于高电流增益和工作频率至关重要的薄的、高导电的基层,这些器件很难实现。热电子晶体管(HHT)可以解决这个问题。载流子在势垒中的输运通过由基极调制的从发射极到集电极的热电子的注入而发生。需要超薄的基底来实现超短的传输时间以实现高性能。 诸如过渡金属二硫属化物的原子薄的2D材料是用作HET中的基极的理想材料。然而,这将需要在氮化物异质结构内结合2D基极层,同时保持高质量界面。以前的研究已经使用层转移方法将2D层合并到HPLOS中,但这种方法引入了界面杂质,并且难以扩展到大面积。 该项目将集中于直接外延生长超薄TMD基极层的(铝,镓)N集电极通过金属有机化学气相沉积沿着与超宽带隙六方氮化硼作为发射极层的使用。有关的外延生长,材料表征和电流传输的基本问题将在一个逐步的过程中,重点放在发射极-基极和基极-集电极接口进行调查。 这将提供对整体HET设备性能的深入了解和进一步优化的建议。研究成果将纳入本科和研究生课程。该项目还将为来自不同背景的本科生和高中生提供研究机会。技术:提出了一种二维(2D)层基热电子晶体管(HET),用于克服III族氮化物基异质结双极晶体管(HBT)所面临的困难。由于它们的基极的掺杂值有限,它们在表现出良好的电特性方面受到严重阻碍。在晶体管基极中使用的2D层由于其高导电性而将导致低基极电阻,而双极基极应允许注入其中的电子载流子在没有渡越时间限制的情况下行进。2D过渡金属二硫属化物(TMD),如WS 2和WSe 2,这是几乎晶格匹配的GaN和AlGaN集电极将探索为基础。 为了避免引入界面杂质以及在2D层转移技术中通常遇到的大面积缩放的困难,研究将集中在金属有机化学气相沉积(MOCVD)的直接生长上。这将用于在氮化铝镓((Al,Ga)N)收集器上生长六方氮化硼(hBN)发射体和TMD单层和少层基膜。它还将允许高质量的2D/氮化物界面。这些研究将允许理解表面能,晶格失配和缺陷对(Al,Ga)N上的2D薄膜的成核和外延生长的作用,以及界面处的缺陷及其与材料性能和生长的相关性。将研究基本材料和器件块,以充分了解生长和传输机制的基本原理,并优化HPLOS。最重要的是理解通过导致HET器件及其优化的各个层的电流传输。从该项目中获得的知识将影响电信和传感领域,从而有助于提高生活质量。教育/外展活动将针对研究生、本科生和高中生以及K-12和公众。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joan Redwing其他文献
Epitaxial Growth of MoS2 on Sapphire (c-Al2O3) by MOCVD
MOCVD 在蓝宝石 (c-Al2O3) 上外延生长 MoS2
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Myeongok Kim;Nazmul Ahsan;Nicholas Trainor;Chen Chen;Dorota Kowalczyk;Joan Redwing;Yoshitaka Okada - 通讯作者:
Yoshitaka Okada
Ion-Implantation-Induced Damage Characteristics Within AlN and Si for GaN-on-Si Epitaxy
- DOI:
10.1007/s11664-013-2491-5 - 发表时间:
2013-03-09 - 期刊:
- 影响因子:2.500
- 作者:
Jeffrey M. Leathersich;Mihir Tungare;Xiaojun Weng;Puneet Suvarna;Pratik Agnihotri;Morgan Evans;Joan Redwing;F. Shahedipour-Sandvik - 通讯作者:
F. Shahedipour-Sandvik
Approaches to high-efficiency intermediate band photovoltaics
高效中频光伏发电的方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Myeongok Kim;Nazmul Ahsan;Nicholas Trainor;Chen Chen;Dorota Kowalczyk;Joan Redwing;Yoshitaka Okada;Yoshitaka Okada - 通讯作者:
Yoshitaka Okada
Joan Redwing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joan Redwing', 18)}}的其他基金
Participant Support for the 23rd American Conference on Crystal Growth and Epitaxy (ACCGE-23); Tucson, Arizona; 13-18 August 2023
第 23 届美国晶体生长和外延会议 (ACCGE-23) 的参与者支持;
- 批准号:
2333144 - 财政年份:2023
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
MIP: 2D Crystal Consortium (MIP-2DCC)
MIP:2D 晶体联盟 (MIP-2DCC)
- 批准号:
2039351 - 财政年份:2021
- 资助金额:
$ 6.54万 - 项目类别:
Cooperative Agreement
Participation Support for Students to Attend the 22nd American Conference on Crystal Growth and Epitaxy, Virtual, August 2-4, 2021
为学生参加第 22 届美国晶体生长和外延会议提供参与支持,虚拟会议,2021 年 8 月 2-4 日
- 批准号:
2138270 - 财政年份:2021
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
2019 17th International Summer School on Crystal Growth (ISSCG-17)(Granby, Colorado)
2019年第十七届晶体生长国际暑期学校(ISSCG-17)(科罗拉多州格兰比)
- 批准号:
1917552 - 财政年份:2019
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Graphene Encapsulated Growth of 2D Materials
石墨烯封装的二维材料生长
- 批准号:
1808900 - 财政年份:2018
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
NSF EFRI-2DARE, DMREF-2D and MIP Grantees Meeting to be held in November 13-15, 2017 in State College, PA
NSF EFRI-2DARE、DMREF-2D 和 MIP 受资助者会议将于 2017 年 11 月 13 日至 15 日在宾夕法尼亚州州立学院举行
- 批准号:
1748382 - 财政年份:2017
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
MIP: 2D Crystal Consortium (MIP-2DCC)
MIP:2D 晶体联盟 (MIP-2DCC)
- 批准号:
1539916 - 财政年份:2016
- 资助金额:
$ 6.54万 - 项目类别:
Cooperative Agreement
PFI:AIR - TT: One-Step Process for High Efficiency Textured Solar Cells
PFI:AIR - TT:高效纹理太阳能电池的一步工艺
- 批准号:
1414236 - 财政年份:2014
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
GOALI: Strained Layer Heterostructures for GaN-on-Si Epitaxy
目标:用于 GaN-on-Si 外延的应变层异质结构
- 批准号:
1410765 - 财政年份:2014
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
EFRI 2-DARE: 2D Crystals formed by Activated Atomic Layer Deposition
EFRI 2-DARE:通过活化原子层沉积形成的 2D 晶体
- 批准号:
1433378 - 财政年份:2014
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 6.54万 - 项目类别:
Standard Grant