FET:Medium: Drug discovery using quantum machine learning
FET:中:使用量子机器学习进行药物发现
基本信息
- 批准号:2210963
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Existing drug discovery pipelines take 10-15 years from initial idea to market approval and cost billions of dollars. Extensive time is attributed to the expansive search space and lack of efficient search tools, whereas the cost is primarily attributed to inferior quality drug candidates that fail in clinical trials. High-quality search tools are required to increase the variety and quality of drug candidates that enter optimization. While high-performance computing assisted by Artificial Intelligence (AI) can screen a large pool of chemical compounds quickly to narrow down candidates that possess various desirable properties, a very large fraction of potential space for candidate drugs still goes unexplored. Furthermore, it is computationally expensive and inefficient in sampling the desired probability distributions in solution space which grows exponentially with the number of molecules. Quantum AI is more expressive, i.e., it can model a target probability distribution even with a limited number of qubits and parameters to sample from the unexplored regions of the search space. However, their true potential and application in drug discovery remain unexplored. This project will fill this void by creating Quantum Machine Learning (QML) models that will employ noisy quantum computers. If successful, this project will unleash new computational capabilities in discovery applications, e.g., by selecting novel lead chemical compounds versus important target proteins to treat diseases, such as cancer, by converging multiple disciplines. The generic and extendible QML toolset will enable the use of quantum computing for other discovery applications, e.g., material discovery. This project will advance quantum computing and quantum AI by addressing the scalability issue. It will develop an integrated introduction to quantum computing and application for K-12 teachers, including a professional development workshop and curricular materials that address local and national-level standards in science and engineering education. It will also develop undergraduate coursework supported by Penn State Quantum Minor program to prepare a quantum-ready workforce. Researchers will develop DrugVAE (a quantum variational autoencoder) to search and screen ligands and QDock (a quantum docking engine) to validate the ligands and aid in screening. Various scalability, application-level parallelization and training approaches for distributed computing will also be developed. Researchers will optimize and parallelize, map, and schedule the QML workloads from DrugVAE and QDock into target quantum computers considering architectural and hardware constraints for performance, resilience and cost. The output features will be provided to the classical neural network as needed. Researchers will computationally validate QML-generated compounds against slower, traditional docking as well as experimentally determined binding affinities. The research will provide materials for workforce development and undergraduate curriculum. Various tasks will be synergized through novel techniques, such as QML-specific optimization, target-specific search and refinement of model parameters, and optimization based on validation results. This project will cover all levels of abstractions to meet the end goal of drug discovery, e.g., program/circuit design, optimization, circuit-to-architecture mapping, parallelization, and scheduling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现有的药物发现管道从最初的想法到市场批准需要10-15年,花费数十亿美元。大量的时间归因于广阔的搜索空间和缺乏有效的搜索工具,而成本主要归因于在临床试验中失败的劣质候选药物。需要高质量的搜索工具来增加进入优化的候选药物的种类和质量。虽然人工智能(AI)辅助的高性能计算可以快速筛选大量化合物,以缩小具有各种理想特性的候选药物的范围,但候选药物的很大一部分潜在空间仍未开发。此外,它是计算昂贵的和低效的采样所需的概率分布在溶液空间中的分子数量呈指数增长。量子人工智能更有表现力,即,它甚至可以用有限数量的量子比特和参数来对目标概率分布建模,以从搜索空间的未探测区域进行采样。然而,它们在药物发现中的真正潜力和应用仍然未被探索。该项目将通过创建量子机器学习(QML)模型来填补这一空白,该模型将采用嘈杂的量子计算机。如果成功,该项目将在发现应用中释放新的计算能力,例如,通过选择新的先导化合物与重要的靶蛋白来治疗疾病,如癌症,通过融合多学科。通用和可扩展的QML工具集将使量子计算能够用于其他发现应用,例如,物质发现该项目将通过解决可扩展性问题来推进量子计算和量子AI。它将为K-12教师开发量子计算和应用的综合介绍,包括专业发展研讨会和课程材料,这些材料涉及科学和工程教育的地方和国家标准。它还将开发由宾夕法尼亚州立大学量子未成年人计划支持的本科课程,以准备量子就绪的劳动力。研究人员将开发DrugVAE(一种量子变分自动编码器)来搜索和筛选配体,并开发QDock(一种量子对接引擎)来验证配体并帮助筛选。还将开发各种可扩展性、应用程序级并行化和分布式计算的培训方法。研究人员将优化和并行化,映射和调度来自DrugVAE和QDock的QML工作负载到目标量子计算机中,同时考虑性能,弹性和成本的架构和硬件限制。输出特征将根据需要提供给经典神经网络。研究人员将通过计算验证QML生成的化合物与较慢的传统对接以及实验确定的结合亲和力。这项研究将为劳动力发展和本科课程提供材料。各种任务将通过新技术协同进行,例如QML特定优化,目标特定搜索和模型参数的细化,以及基于验证结果的优化。该项目将涵盖所有级别的抽象,以满足药物发现的最终目标,例如,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Special Session: On the Reliability of Conventional and Quantum Neural Network Hardware
特别会议:论传统和量子神经网络硬件的可靠性
- DOI:10.1109/vts52500.2021.9794194
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sadi, Mehdi;He, Yi;Li, Yanjing;Alam, Mahabubul;Kundu, Satwik;Ghosh, Swaroop;Bahrami, Javad;Karimi, Naghmeh
- 通讯作者:Karimi, Naghmeh
Big versus small: The impact of aggregate size in disease.
- DOI:10.1002/pro.4686
- 发表时间:2023-07
- 期刊:
- 影响因子:8
- 作者:Hnath, Brianna;Chen, Jiaxing;Reynolds, Joshua;Choi, Esther;Wang, Jian;Zhang, Dongyan;Sha, Congzhou M.;Dokholyan, Nikolay V.
- 通讯作者:Dokholyan, Nikolay V.
Quantum Machine Learning for Material Synthesis and Hardware Security (Invited Paper)
- DOI:10.1145/3508352.3561115
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Collin Beaudoin;Satwik Kundu;R. Topaloglu;Swaroop Ghosh
- 通讯作者:Collin Beaudoin;Satwik Kundu;R. Topaloglu;Swaroop Ghosh
Vitamin D Receptor Antagonist MeTC7 Inhibits PD-L1.
维生素D受体拮抗剂METC7抑制PD-L1。
- DOI:10.3390/cancers15133432
- 发表时间:2023-06-30
- 期刊:
- 影响因子:5.2
- 作者:Khazan, Negar;Quarato, Emily R. R.;Singh, Niloy A. A.;Snyder, Cameron W. A.;Moore, Taylor;Miller, John P. P.;Yasui, Masato;Teramoto, Yuki;Goto, Takuro;Reshi, Sabeeha;Hong, Jennifer;Zhang, Naixin;Pandey, Diya;Srivastava, Priyanka;Morell, Alexandra;Kawano, Hiroki;Kawano, Yuko;Conley, Thomas;Sahasrabudhe, Deepak M. M.;Yano, Naohiro;Miyamoto, Hiroshi;Aljitawi, Omar;Liesveld, Jane;Becker, Michael W. W.;Calvi, Laura M. M.;Zhovmer, Alexander S. S.;Tabdanov, Erdem D. D.;Dokholyan, Nikolay V. V.;Linehan, David C. C.;Hansen, Jeanne N. N.;Gerber, Scott A. A.;Sharon, Ashoke;Khera, Manoj K. K.;Jurutka, Peter W. W.;Rochel, Natacha;Kim, Kyu Kwang;Rowswell-Turner, Rachael B. B.;Singh, Rakesh K. K.;Moore, Richard G. G.
- 通讯作者:Moore, Richard G. G.
Trainable PQC-Based QRAM for Quantum Storage
用于量子存储的可训练的基于 PQC 的 QRAM
- DOI:10.1109/access.2023.3278600
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Phalak, Koustubh;Li, Junde;Ghosh, Swaroop
- 通讯作者:Ghosh, Swaroop
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Swaroop Ghosh其他文献
Trustworthy Computing using Untrusted Cloud-Based Quantum Hardware
使用不可信的基于云的量子硬件进行可信计算
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Upadhyay;R. Topaloglu;Swaroop Ghosh - 通讯作者:
Swaroop Ghosh
Trojan Attacks on Variational Quantum Circuits and Countermeasures
变分量子电路的木马攻击及对策
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Subrata Das;Swaroop Ghosh - 通讯作者:
Swaroop Ghosh
A 1 Gb 2 GHz 128 GB/s Bandwidth Embedded DRAM in 22 nm Tri-Gate CMOS Technology
采用 22 nm 三栅 CMOS 技术的 1 Gb 2 GHz 128 GB/s 带宽嵌入式 DRAM
- DOI:
10.1109/jssc.2014.2353793 - 发表时间:
2015 - 期刊:
- 影响因子:5.4
- 作者:
F. Hamzaoglu;U. Arslan;N. Bisnik;Swaroop Ghosh;M. Lal;N. Lindert;Mesut Meterelliyoz;R. Osborne;Joodong Park;S. Tomishima;Yih Wang;Kevin Zhang - 通讯作者:
Kevin Zhang
Optimization of Quantum Read-Only Memory Circuits
量子只读存储器电路的优化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Koustubh Phalak;M. Alam;Abdullah Ash;R. Topaloglu;Swaroop Ghosh - 通讯作者:
Swaroop Ghosh
Guest Editorial Emerging Memories - Technology, Architecture and Applications (First Issue)
客座社论新兴记忆 - 技术、架构和应用(第一期)
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Swaroop Ghosh;R. Joshi;D. Somasekhar;Xin Li - 通讯作者:
Xin Li
Swaroop Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Swaroop Ghosh', 18)}}的其他基金
SaTC: CORE: Small: SLIQ: Securing Large-Scale Noisy-Intermediate Scale Quantum Computing
SaTC:核心:小型:SLIQ:确保大规模噪声中级量子计算的安全
- 批准号:
2129675 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SaTC: EDU: A Curriculum for Quantum Security and Trust
SaTC:EDU:量子安全和信任课程
- 批准号:
2113839 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
NSF Convergence Accelerator - Track C: SQAI: Scalable Quantum Artificial Intelligence for Discovery
NSF 融合加速器 - 轨道 C:SQAI:用于发现的可扩展量子人工智能
- 批准号:
2040667 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SaTC: STARSS: Small: Assuring Security and Privacy of Emerging Non-Volatile Memories
SaTC:STARSS:小型:确保新兴非易失性存储器的安全性和隐私
- 批准号:
1814710 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SaTC: EDU: CyCAD: A Virtual Platform for Cybersecurity Curriculum on Analog Design
SaTC:EDU:CyCAD:模拟设计网络安全课程虚拟平台
- 批准号:
1821766 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF:Small: Collaborative Research: Exploring 3-Dimensional Integration Strategies of STTRAM
SHF:Small:协作研究:探索 STTRAM 的 3 维集成策略
- 批准号:
1718474 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SaTC: EDU: Advancing Cybersecurity Education through Self-Learning Cybersecurity Training Kit
SaTC:EDU:通过自学网络安全培训套件推进网络安全教育
- 批准号:
1723687 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
- 批准号:
1722557 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
- 批准号:
1441757 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant














{{item.name}}会员




