Kinetic Equations in Bounded Domains

有界域中的动力学方程

基本信息

  • 批准号:
    2104775
  • 负责人:
  • 金额:
    $ 22.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Kinetic theory concerns the dynamics of a large number of particles, such as flows of air or water, plasmas, neutron transport, and radiation transfer. In classical mechanics, such systems can be described under different scales. In the microscopic scale, Newton's laws track the position and velocity of each particle. In the macroscopic scale, fluid mechanics and thermodynamics provide effective tools to predict the behaviors of averaged statistical properties like pressure and temperature. Kinetic theory forms a bridge between these two approaches and utilizes probabilistic tools in the position-velocity space, the so-called phase space, to obtain a mesoscopic description. The probability density of particles present in the phase space satisfies the Boltzmann equation or the Landau equation, which are evolutionary partial differential equations. This project focuses on the kinetic equations in bounded domains, where the particles may be reflected or absorbed by the physical boundary. The purpose is to develop novel mathematical tools to characterize the multi-scale behaviors of these particle systems in applications such as medical imaging, fluid mechanics, and nuclear fusion. The project provides opportunities for research training of graduate students.This project concentrates on the theory of hydrodynamic limits, a key step to tackle the so-called "Hilbert's sixth Problem" to treat physics in an axiomatic manner. The aim is to study the asymptotic behavior of kinetic equations when the Knudsen number, which measures the relative distance a particle can travel between two collisions, shrinks to zero. The focus is in justifying the validity of asymptotic approximations of kinetic equations in the presence of boundary layer effects, where the geometric correction of the boundary is non-negligible. The investigator will develop new boundary layer decomposition, regularization, and reflection extension techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学理论涉及大量粒子的动力学,如空气或水的流动,等离子体,中子输运和辐射转移。在经典力学中,这样的系统可以在不同的尺度下描述。在微观尺度上,牛顿定律跟踪每个粒子的位置和速度。在宏观尺度上,流体力学和热力学提供了有效的工具来预测平均统计性质的行为,如压力和温度。动力学理论形成了这两种方法之间的桥梁,并利用概率工具的位置-速度空间,所谓的相空间,以获得介观的描述。存在于相空间中的粒子的概率密度满足作为演化偏微分方程的玻尔兹曼方程或朗道方程。这个项目的重点是在有界区域的动力学方程,其中粒子可能被反射或吸收的物理边界。其目的是开发新的数学工具来表征这些粒子系统在医学成像,流体力学和核聚变等应用中的多尺度行为。该项目为研究生提供了研究培训的机会。该项目集中于流体动力学极限理论,这是解决所谓的“希尔伯特第六问题”的关键一步,以公理化的方式处理物理学。其目的是研究当克努森数(Knudsen number)缩小到零时动力学方程的渐近行为,克努森数衡量粒子在两次碰撞之间可以移动的相对距离。重点是证明存在边界层效应时动力学方程的渐近近似的有效性,其中边界的几何校正是不可忽略的。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrodynamic Limit of 3dimensional Evolutionary Boltzmann Equation in Convex Domains
凸域中三维演化玻尔兹曼方程的流体力学极限
On the quantum Boltzmann equation near Maxwellian and vacuum
  • DOI:
    10.1016/j.jde.2022.01.056
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Zhimeng Ouyang;Lei Wu
  • 通讯作者:
    Zhimeng Ouyang;Lei Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Wu其他文献

Palladium Nanoparticles Stabilized by Metal–Carbon Covalent Bonds as an Expeditious Catalyst for the Oxidative Dehydrogenation of Nitrogen Heterocycles
金属-碳共价键稳定的钯纳米粒子作为氮杂环氧化脱氢的快速催化剂
  • DOI:
    10.1002/cctc.201700370
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xiao-Tao Sun;Jie Zhu;Yun-Tao Xia;Lei Wu
  • 通讯作者:
    Lei Wu
Protecting personalized privacy against sensitivity homogeneity attacks over road networks in mobile services
保护个性化隐私免受移动服务中道路网络的敏感度同质性攻击
  • DOI:
    10.1007/s11704-015-4528-9
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Weizhang Chen;Lei Wu;Chunhui Piao;Zhaojun Hu
  • 通讯作者:
    Zhaojun Hu
Pain on the Plane
飞机上的疼痛
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Wu;K. Lalwani
  • 通讯作者:
    K. Lalwani
Progress of Animal Behavior Studies with Optical Motion Capture System
光学动作捕捉系统动物行为研究进展
  • DOI:
    10.1145/3278198.3278212
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingpu Bi;Lei Wu
  • 通讯作者:
    Lei Wu
ALS-causing SOD1 mutants regulate occludin phosphorylation/ubiquitination and endocytic trafficking via the ITCH/Eps15/Rab5 axis
引起 ALS 的 SOD1 突变体通过 ITCH/Eps15/Rab5 轴调节 occludin 磷酸化/泛素化和内吞运输
  • DOI:
    10.1016/j.nbd.2021.105315
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jingshu Tang;Yuying Kang;Yujun Zhou;Xinnan Li;Jiaqi Lan;Lei Wu;Xinhong Feng;Ying Peng
  • 通讯作者:
    Ying Peng

Lei Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Wu', 18)}}的其他基金

CAREER: Stochastic Multiple Time-Scale Co-Optimized Resource Planning of Future Power Systems with Renewable Generation, Demand Response, and Energy Storage
职业:可再生能源发电、需求响应和储能的未来电力系统的随机多时间尺度协同优化资源规划
  • 批准号:
    1906532
  • 财政年份:
    2019
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
  • 批准号:
    1906780
  • 财政年份:
    2019
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
  • 批准号:
    1915756
  • 财政年份:
    2019
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Real-time Investigations of Anisotropic Nanoparticle Aggregation and Consequences for Deposition in Porous Media
合作研究:各向异性纳米颗粒聚集及其在多孔介质中沉积的后果的实时研究
  • 批准号:
    1836905
  • 财政年份:
    2019
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
CO2-Enhanced Gas Recovery (CO2-EGR): Multi-Scale Simulation of Rarefied Gas Flows in Porous Media
CO2 增强气体回收 (CO2-EGR):多孔介质中稀薄气体流动的多尺度模拟
  • 批准号:
    EP/R041938/1
  • 财政年份:
    2018
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Research Grant
Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
  • 批准号:
    1810721
  • 财政年份:
    2018
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
  • 批准号:
    1853002
  • 财政年份:
    2018
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
  • 批准号:
    1647135
  • 财政年份:
    2017
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
  • 批准号:
    1635339
  • 财政年份:
    2017
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Multiple Time-Scale Co-Optimized Resource Planning of Future Power Systems with Renewable Generation, Demand Response, and Energy Storage
职业:可再生能源发电、需求响应和储能的未来电力系统的随机多时间尺度协同优化资源规划
  • 批准号:
    1254310
  • 财政年份:
    2013
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant

相似海外基金

Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Research Grant
Intersection Theory for Differential Equations
微分方程的交集理论
  • 批准号:
    2401570
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
  • 批准号:
    10091110
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Collaborative R&D
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了