Asymptotic Problems with Boundary Effect in Kinetic Theory

动力学理论中边界效应的渐近问题

基本信息

  • 批准号:
    1810721
  • 负责人:
  • 金额:
    $ 9.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Kinetic theory describes the dynamics of a large number of particles, such as flows of air particles passing an airfoil, or neutrons' collisions in a nuclear reactor. In a statistical manner, the kinetic description bridges the micro-scale modeling of motion of particles by Newtonian mechanics and the macro-scale modeling by continuum fluid mechanics. This research project aims to develop novel mathematical methods to quantitatively characterize these multi-scale models. The investigation focuses on the motion of rarefied gas, neutrons, electrons, and ions, in spatially bounded regions under the influence of the surrounding environment. Its applications range from high-tech fields like semi-conductors or nuclear fusion, to daily-life devices like water sprays or fluorescent lamps.Specifically, this project concentrates on the hydrodynamic limit of the Boltzmann equation or transport equation, i.e. how the solution varies asymptotically when a small parameter, either the Knudsen number or the Strouhal number, approaches zero. In bounded domains, kinetic boundary corrections (i.e. boundary layers), play a crucial role. The investigator intends to justify the validity of the asymptotic approximation in the presence of singular boundary layers. Moreover, the initial-boundary interactions and nonlinear effects are taken into consideration. To tackle the non-standard asymptotic expansions, the investigator seeks to develop general theories of geometric correction in boundary layers, rescaled remainder estimates, Milne regularity analysis, non-local energy methods, and boundary layers decomposition. These techniques can be further applied to Vlasov systems and magnetohydrodynamical (MHD) equations. Also, the rigorous derivations of fractional diffusion and stochastic diffusion are involved.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学理论描述了大量粒子的动力学,例如空气粒子通过翼型的流动,或核反应堆中的中子碰撞。以统计的方式,动力学描述桥梁的微观尺度的牛顿力学和宏观尺度的连续流体力学模型的粒子运动的建模。该研究项目旨在开发新的数学方法来定量表征这些多尺度模型。研究的重点是稀薄气体、中子、电子和离子在受周围环境影响的空间有界区域内的运动。其应用范围从半导体、核聚变等高科技领域,到喷水器、荧光灯等日常生活设备。具体而言,本项目集中研究玻尔兹曼方程或输运方程的流体动力学极限,即当小参数(克努森数或斯特罗哈尔数)接近零时,解如何渐近变化。在有界域中,动力学边界修正(即边界层)起着至关重要的作用。研究人员打算证明奇异边界层存在下的渐近近似的有效性。此外,考虑了初始边界相互作用和非线性效应。为了解决非标准的渐近展开式,研究人员试图发展边界层几何校正的一般理论,重新标度的剩余估计,米尔恩正则性分析,非局部能量方法和边界层分解。这些技术可以进一步应用到Vlasov系统和磁流体动力学(MHD)方程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Wu其他文献

Palladium Nanoparticles Stabilized by Metal–Carbon Covalent Bonds as an Expeditious Catalyst for the Oxidative Dehydrogenation of Nitrogen Heterocycles
金属-碳共价键稳定的钯纳米粒子作为氮杂环氧化脱氢的快速催化剂
  • DOI:
    10.1002/cctc.201700370
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xiao-Tao Sun;Jie Zhu;Yun-Tao Xia;Lei Wu
  • 通讯作者:
    Lei Wu
Protecting personalized privacy against sensitivity homogeneity attacks over road networks in mobile services
保护个性化隐私免受移动服务中道路网络的敏感度同质性攻击
  • DOI:
    10.1007/s11704-015-4528-9
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Weizhang Chen;Lei Wu;Chunhui Piao;Zhaojun Hu
  • 通讯作者:
    Zhaojun Hu
Pain on the Plane
飞机上的疼痛
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Wu;K. Lalwani
  • 通讯作者:
    K. Lalwani
Progress of Animal Behavior Studies with Optical Motion Capture System
光学动作捕捉系统动物行为研究进展
  • DOI:
    10.1145/3278198.3278212
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingpu Bi;Lei Wu
  • 通讯作者:
    Lei Wu
ALS-causing SOD1 mutants regulate occludin phosphorylation/ubiquitination and endocytic trafficking via the ITCH/Eps15/Rab5 axis
引起 ALS 的 SOD1 突变体通过 ITCH/Eps15/Rab5 轴调节 occludin 磷酸化/泛素化和内吞运输
  • DOI:
    10.1016/j.nbd.2021.105315
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jingshu Tang;Yuying Kang;Yujun Zhou;Xinnan Li;Jiaqi Lan;Lei Wu;Xinhong Feng;Ying Peng
  • 通讯作者:
    Ying Peng

Lei Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Wu', 18)}}的其他基金

Kinetic Equations in Bounded Domains
有界域中的动力学方程
  • 批准号:
    2104775
  • 财政年份:
    2021
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Multiple Time-Scale Co-Optimized Resource Planning of Future Power Systems with Renewable Generation, Demand Response, and Energy Storage
职业:可再生能源发电、需求响应和储能的未来电力系统的随机多时间尺度协同优化资源规划
  • 批准号:
    1906532
  • 财政年份:
    2019
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
  • 批准号:
    1906780
  • 财政年份:
    2019
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
  • 批准号:
    1915756
  • 财政年份:
    2019
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Real-time Investigations of Anisotropic Nanoparticle Aggregation and Consequences for Deposition in Porous Media
合作研究:各向异性纳米颗粒聚集及其在多孔介质中沉积的后果的实时研究
  • 批准号:
    1836905
  • 财政年份:
    2019
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
CO2-Enhanced Gas Recovery (CO2-EGR): Multi-Scale Simulation of Rarefied Gas Flows in Porous Media
CO2 增强气体回收 (CO2-EGR):多孔介质中稀薄气体流动的多尺度模拟
  • 批准号:
    EP/R041938/1
  • 财政年份:
    2018
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grant
Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
  • 批准号:
    1853002
  • 财政年份:
    2018
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
  • 批准号:
    1647135
  • 财政年份:
    2017
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
  • 批准号:
    1635339
  • 财政年份:
    2017
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Multiple Time-Scale Co-Optimized Resource Planning of Future Power Systems with Renewable Generation, Demand Response, and Energy Storage
职业:可再生能源发电、需求响应和储能的未来电力系统的随机多时间尺度协同优化资源规划
  • 批准号:
    1254310
  • 财政年份:
    2013
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant

相似海外基金

Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
  • 批准号:
    22K03387
  • 财政年份:
    2022
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancement in viscosity solution theory: asymptotic and boundary value problems
粘度解理论的进展:渐近问题和边值问题
  • 批准号:
    20K03688
  • 财政年份:
    2020
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
  • 批准号:
    1853002
  • 财政年份:
    2018
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Existence of solutions of free boundary problems of two-phase fluids and their asymptotic behaviors
两相流体自由边界问题解的存在性及其渐近行为
  • 批准号:
    17K17804
  • 财政年份:
    2017
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on the stability and asymptotic shapes of nonlocal nonlinear boundary value problems including unknown definite integrals
含未知定积分的非局部非线性边值问题的稳定性和渐近形状研究
  • 批准号:
    18540224
  • 财政年份:
    2006
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis and boundary value problems
渐近分析和边值问题
  • 批准号:
    5358027
  • 财政年份:
    2002
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grants
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
  • 批准号:
    0196526
  • 财政年份:
    2001
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
  • 批准号:
    0088973
  • 财政年份:
    2000
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Asymptotic Expansions, Inverse Problems and Homogenization of Boundary Values
渐进展开、反问题和边界值齐次化
  • 批准号:
    0072511
  • 财政年份:
    2000
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了