NSF-BSF: Quantitative Evaluation of Aerosol Impacts on the Microphysical Composition, Electrification and Radiative Forcing of Deep Tropical Convective Clouds

NSF-BSF:气溶胶对热带深层对流云微物理成分、带电和辐射强迫影响的定量评估

基本信息

  • 批准号:
    2113494
  • 负责人:
  • 金额:
    $ 48.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Atmospheric aerosol particles range in size from a few nanometers to tens of micrometers and have both natural and anthropogenic sources. Aerosol particles act as cloud condensation nuclei (CCN), and therefore changes in aerosol particle abundance can alter the cloud drop concentrations and subsequently cloud reflectivity and lifetime as well as associated precipitation. Tropical deep convective clouds (DCC) are important to Earth’s global energy balance and hydrologic cycle and can induce high impact weather with significant precipitation and lightning. However, the effects of aerosol particles on DCC properties, including the onset and amount of precipitation, vertical development, electrification and associated lightning, and the extent and lifetime of associated high altitude ice clouds, remain poorly quantified. In this project, the effect of aerosol particles on such weather and climate related phenomena is studied, addressing a major open question of whether and how human-induced aerosol particle pollution has altered weather phenomena (e.g., potentially moving tropical showers to thunderstorms), and climate. Global climate models are being used to inform socioeconomic policy decisions around the world, but the processes investigated in this project are practically absent from these models. Therefore, the outcome of this study could have broad impacts on our understanding of the anthropogenic aerosol impacts on climate predictions and in turn upon policies being developed for mitigation and adaptation. The project will train graduate and undergraduate students through international collaboration in the fundamental physics and chemistry of the atmosphere and developing their technical skills in the analysis of large multivariable datasets, 3-dimensional computer models of the atmosphere, and satellite remote sensing technology. Tropical marine regions are likely most sensitive to the additional input of aerosol particles which act CCN. Ultrafine aerosol particles (UAP) 40 nm in size are not typically considered CCN, but they may in fact nucleate cloud droplets in DCC. Observations of UAP, specifically, and CCN, are lacking in such clean regions needed to test hypotheses about the aerosol impacts on deep convective clouds and associated effects on climate. To address these limitations, this joint NSF-BSF project between University of Washington (UW), The Hebrew University Jerusalem Israel (HUJI), and collaborators, leverages i) remote sensing of DCC microphysics to constrain CCN and UAP impacting individual convective events, ii) analysis of 15 years of global tropical lightning stroke fields guided by chemical transport model predictions of UAP and CCN, and iii) cloud resolving modelling of key domains constrained by the satellite remote sensing insights, lightning observations, and chemical transport model predictions of UAP and CCN. The project will evaluate how CCN, including UAP, perturb the microphysics of tropical deep convective clouds and to what extent such perturbations affect lightning and cloud radiative effects, and provide a test of the hypothesis that increases in CCN and UAP since preindustrial time, due to human activities associated with fuel combustion, have induced a positive radiative forcing (warming) on climate through deep convective clouds. Such a climate forcing would be in opposition to the negative radiative forcing in which CCN increases affects low cloud albedo and lifetime and would alter our understanding of climate sensitivity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大气气溶胶颗粒的大小从几纳米到几十微米不等,有自然和人为来源。气溶胶粒子作为云凝结核(CCN),因此气溶胶粒子丰度的变化可以改变云滴浓度,从而改变云的反射率和寿命以及相关的降水。热带深对流云(DCC)对地球的全球能量平衡和水文循环具有重要意义,并能诱发强降水和闪电等强影响天气。然而,气溶胶粒子对DCC特性的影响,包括降水的开始和数量、垂直发展、带电和相关闪电,以及相关高空冰云的范围和寿命,仍然难以量化。在这个项目中,研究了气溶胶粒子对这些天气和气候相关现象的影响,解决了一个主要的开放问题,即人为气溶胶粒子污染是否以及如何改变了天气现象(例如,可能移动的热带阵雨到雷暴)和气候。全球气候模型正被用于为世界各地的社会经济政策决策提供信息,但本项目中调查的过程实际上并不存在于这些模型中。因此,这项研究的结果可能会对我们理解人为气溶胶对气候预测的影响产生广泛的影响,进而影响到正在制定的减缓和适应政策。该项目将通过国际合作培训研究生和本科生掌握大气层的基本物理和化学知识,并发展他们在分析大型多变量数据集、大气层三维计算机模型和卫星遥感技术方面的技能。热带海洋区域可能对作用于云凝结核的气溶胶粒子的额外输入最为敏感。尺寸为40 nm的超细气溶胶颗粒(UAP)通常不被认为是CCN,但它们实际上可能在DCC中成为云滴的核。特别是,在这些清洁地区缺乏对UAP和CCN的观测,这些清洁地区需要测试气溶胶对深对流云的影响及其对气候的相关影响的假设。为了解决这些局限性,华盛顿大学(UW),以色列耶路撒冷希伯来大学(HUJI)和合作者之间的NSF-BSF联合项目利用i)DCC微物理学的遥感来限制影响单个对流事件的CCN和UAP,ii)分析15年的全球热带雷击场,由UAP和CCN的化学传输模型预测指导,以及iii)受卫星遥感见解、闪电观测以及UAP和CCN的化学输送模式预测约束的关键域的云解析建模。该项目将评估云凝结核,包括不稳定大气层,如何扰动热带深对流云的微物理,以及这种扰动在多大程度上影响闪电和云辐射效应,并提供一个假设的测试,即自工业化前以来,由于与燃料燃烧有关的人类活动,云凝结核和不稳定大气层的增加,通过深对流云对气候产生了正辐射强迫(变暖)。这样的气候强迫将与负辐射强迫相反,在负辐射强迫中,云凝结核的增加会影响低云的持续时间和寿命,并将改变我们对气候敏感性的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Thornton其他文献

Researching Public Pension Plans
研究公共养老金计划

Joel Thornton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Thornton', 18)}}的其他基金

Collaborative Research: Greater New York (NY) Oxidant, Trace gas, Halogen, and Aerosol Airborne Mission (GOTHAAM)
合作研究:大纽约 (NY) 氧化剂、微量气体、卤素和气溶胶机载任务 (GOTHAAM)
  • 批准号:
    2023670
  • 财政年份:
    2020
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Direct Probing of Organic Peroxy Radical Autoxidation and Cross Reactions
有机过氧自由基自氧化和交叉反应的直接探测
  • 批准号:
    1807204
  • 财政年份:
    2018
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN)
合作研究:西方野火云化学、气溶胶吸收和氮气实验(WE-CAN)
  • 批准号:
    1652688
  • 财政年份:
    2017
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Chlorine Activation in Biomass Burning Plumes
合作研究:生物质燃烧羽流中的氯活化
  • 批准号:
    1551981
  • 财政年份:
    2016
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER)
合作研究:冬季运输、排放和反应性调查(WINTER)
  • 批准号:
    1360745
  • 财政年份:
    2014
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-derived Epoxides to Submicron Aerosol Particles
合作研究:量化异戊二烯衍生环氧化物反应吸收至亚微米气溶胶颗粒的二次有机气溶胶形成
  • 批准号:
    1404573
  • 财政年份:
    2014
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Multiphase Chemistry and Mass Transport in Submicron Mixed Inorganic and Organic Aerosol Particles
亚微米混合无机和有机气溶胶颗粒中的多相化学和传质
  • 批准号:
    1112414
  • 财政年份:
    2011
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
CAREER: In Situ Constraints on Nocturnal Nitrogen Oxide Chemistry in Forested and Marine Environments
职业:森林和海洋环境中夜间氮氧化物化学的原位限制
  • 批准号:
    0846183
  • 财政年份:
    2009
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
The Fate of Acyl Peroxy Nitrates During Long-Range Pollution Transport and Atmosphere-Forest Interactions
酰基过氧硝酸盐在远距离污染传输和大气-森林相互作用中的命运
  • 批准号:
    0633897
  • 财政年份:
    2007
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
SGER: High Time Resolution Measurements of Peroxy Acyl Nitrates at Mt. Bachelor Observatory During Intercontinental Chemical Transport Experiment Phase B (INTEX-B)
SGER:洲际化学品运输实验 B 阶段 (INTEX-B) 期间,学士山天文台对过氧酰基硝酸盐进行高时间分辨率测量
  • 批准号:
    0613064
  • 财政年份:
    2006
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了