NSF-BSF: Quantitative Evaluation of Aerosol Impacts on the Microphysical Composition, Electrification and Radiative Forcing of Deep Tropical Convective Clouds

NSF-BSF:气溶胶对热带深层对流云微物理成分、带电和辐射强迫影响的定量评估

基本信息

  • 批准号:
    2113494
  • 负责人:
  • 金额:
    $ 48.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Atmospheric aerosol particles range in size from a few nanometers to tens of micrometers and have both natural and anthropogenic sources. Aerosol particles act as cloud condensation nuclei (CCN), and therefore changes in aerosol particle abundance can alter the cloud drop concentrations and subsequently cloud reflectivity and lifetime as well as associated precipitation. Tropical deep convective clouds (DCC) are important to Earth’s global energy balance and hydrologic cycle and can induce high impact weather with significant precipitation and lightning. However, the effects of aerosol particles on DCC properties, including the onset and amount of precipitation, vertical development, electrification and associated lightning, and the extent and lifetime of associated high altitude ice clouds, remain poorly quantified. In this project, the effect of aerosol particles on such weather and climate related phenomena is studied, addressing a major open question of whether and how human-induced aerosol particle pollution has altered weather phenomena (e.g., potentially moving tropical showers to thunderstorms), and climate. Global climate models are being used to inform socioeconomic policy decisions around the world, but the processes investigated in this project are practically absent from these models. Therefore, the outcome of this study could have broad impacts on our understanding of the anthropogenic aerosol impacts on climate predictions and in turn upon policies being developed for mitigation and adaptation. The project will train graduate and undergraduate students through international collaboration in the fundamental physics and chemistry of the atmosphere and developing their technical skills in the analysis of large multivariable datasets, 3-dimensional computer models of the atmosphere, and satellite remote sensing technology. Tropical marine regions are likely most sensitive to the additional input of aerosol particles which act CCN. Ultrafine aerosol particles (UAP) 40 nm in size are not typically considered CCN, but they may in fact nucleate cloud droplets in DCC. Observations of UAP, specifically, and CCN, are lacking in such clean regions needed to test hypotheses about the aerosol impacts on deep convective clouds and associated effects on climate. To address these limitations, this joint NSF-BSF project between University of Washington (UW), The Hebrew University Jerusalem Israel (HUJI), and collaborators, leverages i) remote sensing of DCC microphysics to constrain CCN and UAP impacting individual convective events, ii) analysis of 15 years of global tropical lightning stroke fields guided by chemical transport model predictions of UAP and CCN, and iii) cloud resolving modelling of key domains constrained by the satellite remote sensing insights, lightning observations, and chemical transport model predictions of UAP and CCN. The project will evaluate how CCN, including UAP, perturb the microphysics of tropical deep convective clouds and to what extent such perturbations affect lightning and cloud radiative effects, and provide a test of the hypothesis that increases in CCN and UAP since preindustrial time, due to human activities associated with fuel combustion, have induced a positive radiative forcing (warming) on climate through deep convective clouds. Such a climate forcing would be in opposition to the negative radiative forcing in which CCN increases affects low cloud albedo and lifetime and would alter our understanding of climate sensitivity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大气气溶胶颗粒的大小从几纳米到数十微米,具有天然和人为来源。气溶胶颗粒充当云凝结核(CCN),因此气溶胶颗粒丰度的变化会改变云滴浓度,随后云反射率和寿命以及相关的降水。热带深度对流云(DCC)对地球的全球能量平衡和水文循环很重要,并且可以通过大量降水和闪电诱导高影响天气。但是,气溶胶颗粒对DCC特性的影响,包括降水的发作和量,垂直发育,电气和相关的闪电以及相关的高空冰云的程度和寿命,仍然量化不佳。在该项目中,气溶胶颗粒对这种天气和气候相关现象的影响是研究的,它解决了一个主要的开放问题,即人类引起的气溶胶颗粒污染是否改变了天气现象(例如,潜在地移动的热带淋浴到雷暴)和气候。全球气候模型被用来为世界各地的社会经济政策决策提供信息,但是这些模型实际上没有该项目所研究的过程。因此,这项研究的结果可能会对我们对人为气溶胶对气候预测的影响以及对缓解和适应制定的政策产生的影响产生广泛的影响。该项目将通过在大气的基本物理和化学方面的国际合作来培训毕业生和本科生,并在分析大型多变量数据集,大气的三维计算机模型以及卫星远程灵敏度技术方面发展其技术技能。热带海洋区域可能对ACT CCN的气溶胶颗粒的额外输入最敏感。 Ultrafine气溶胶颗粒(UAP)40 nm通常不被视为CCN,但实际上它们可能在DCC中的核云液滴。在此类清洁区域中,缺乏对UAP的观察结果,并且缺乏测试有关气溶胶对深对流云的影响以及对气候的相关影响的假设所需的清洁区域。 To address these limitations, this joint NSF-BSF project between University of Washington (UW), The Hebrew University Jerusalem Israel (HUJI), and collaborators, leverages i) remote sensitivity of DCC microphysics to constrain CCN and UAP impacting individual convective events, ii) analysis of 15 years of global tropical lightning stroke fields guided by chemical transport model predictions of UAP and CCN, and iii)通过卫星遥感见解,闪电观测和UAP和CCN的化学传输模型预测,云解析关键域的建模。该项目将评估CCN(包括UAP)如何扰动热带深度对流云的微观物理学以及这种扰动在多大程度上影响闪电和云辐射效应,并对CCN和UAP的假设进行测试,该假说自因工业化时间而增加,这是由于与燃料混合物相关的工业化时间而引起的,这会引起良好的辐射(升温),因此构成了强化的强化(泛滥)。反对CCN增加的负面辐射强迫会影响低云反映和终生,并将改变我们对气候敏感性的理解。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点评估而被视为珍贵的支持,并具有更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Thornton其他文献

Researching Public Pension Plans
研究公共养老金计划

Joel Thornton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Thornton', 18)}}的其他基金

Collaborative Research: Greater New York (NY) Oxidant, Trace gas, Halogen, and Aerosol Airborne Mission (GOTHAAM)
合作研究:大纽约 (NY) 氧化剂、微量气体、卤素和气溶胶机载任务 (GOTHAAM)
  • 批准号:
    2023670
  • 财政年份:
    2020
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Direct Probing of Organic Peroxy Radical Autoxidation and Cross Reactions
有机过氧自由基自氧化和交叉反应的直接探测
  • 批准号:
    1807204
  • 财政年份:
    2018
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN)
合作研究:西方野火云化学、气溶胶吸收和氮气实验(WE-CAN)
  • 批准号:
    1652688
  • 财政年份:
    2017
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Chlorine Activation in Biomass Burning Plumes
合作研究:生物质燃烧羽流中的氯活化
  • 批准号:
    1551981
  • 财政年份:
    2016
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER)
合作研究:冬季运输、排放和反应性调查(WINTER)
  • 批准号:
    1360745
  • 财政年份:
    2014
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-derived Epoxides to Submicron Aerosol Particles
合作研究:量化异戊二烯衍生环氧化物反应吸收至亚微米气溶胶颗粒的二次有机气溶胶形成
  • 批准号:
    1404573
  • 财政年份:
    2014
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Multiphase Chemistry and Mass Transport in Submicron Mixed Inorganic and Organic Aerosol Particles
亚微米混合无机和有机气溶胶颗粒中的多相化学和传质
  • 批准号:
    1112414
  • 财政年份:
    2011
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
CAREER: In Situ Constraints on Nocturnal Nitrogen Oxide Chemistry in Forested and Marine Environments
职业:森林和海洋环境中夜间氮氧化物化学的原位限制
  • 批准号:
    0846183
  • 财政年份:
    2009
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
The Fate of Acyl Peroxy Nitrates During Long-Range Pollution Transport and Atmosphere-Forest Interactions
酰基过氧硝酸盐在远距离污染传输和大气-森林相互作用中的命运
  • 批准号:
    0633897
  • 财政年份:
    2007
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
SGER: High Time Resolution Measurements of Peroxy Acyl Nitrates at Mt. Bachelor Observatory During Intercontinental Chemical Transport Experiment Phase B (INTEX-B)
SGER:洲际化学品运输实验 B 阶段 (INTEX-B) 期间,学士山天文台对过氧酰基硝酸盐进行高时间分辨率测量
  • 批准号:
    0613064
  • 财政年份:
    2006
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 48.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了