Reduction of Droop for Antimonide-based Mid-Infrared Lasers

减少锑基中红外激光器的光衰

基本信息

  • 批准号:
    2131613
  • 负责人:
  • 金额:
    $ 35.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In the past 60 years since the demonstration of the first laser, great strides have been made in improving the efficiency of semiconductor lasers, including the integration of numerous stages where light is generated at repeated steps rather than at a single interface, multiplying the output power possible through a cascade configuration. Even with these advances, these devices do not yet operate at their theoretical ideal. The goal of this project is to identify loss mechanisms that result in current not being converted to laser light and to apply that knowledge to improving the design of future cascade semiconductor lasers. This would increase output power and efficiency, particularly for devices emitting in the mid-infrared portion of the spectrum, a range of wavelengths important for applications in environmental monitoring, medicine, and homeland security, including chemical sensing and infrared countermeasures. The approach will include not only current injection, optical excitation, and spectroscopy, but also the integration of two-dimensional sheets of graphene with three-dimensional semiconductor alloys containing elements from the third and fifth columns of the periodic table to create a top contact that is simultaneously optically transparent and both electrically and thermally conductive. Improving efficiency has the potential to substantially reduce input power requirements and operating costs while increasing portability. Classroom and laboratory activities proposed in this work, including creation of videos and engaging lessons, will attract K-12 students to careers in electrical and computer engineering and will contribute to retention of female and minority students by exposing them to cutting edge research at the undergraduate and graduate level.Interband cascade lasers employing type-II band alignment in antimonide-based heterostructures have demonstrated recent success at 3-6 micrometer wavelengths, an important spectral range for applications such as chemical sensing, infrared countermeasures, and free-space optical communications. However, there is a “droop” in efficiency when these lasers are driven above threshold that reduces the maximum power obtainable in continuous wave (cw) or single mode operation. The physical cause for the limitations on output power at high temperatures is not understood. Identifying the fundamental mechanisms that prevent carrier pinning will permit creation of new wave function engineering approaches to increase the maximum output power of these lasers at or above room temperature. This will increase the efficiency of devices so that injected carriers above threshold will contribute to laser output and not be lost to spontaneous emission or non-radiative recombination mechanisms, and consequently substantially reduce input power requirements and operating costs. Contacts will be optimized to collect spontaneous emission, and the physical mechanisms of the limiting behavior will be quantified through light-current, light-light, spectral, current-voltage, and pump-probe measurements, all enhanced by the integration of split-ridge fabrication and/or transparent graphene contacts. The high optical, electrical, and thermal conductivity of graphene will not only aid in the collection of data but will advance optoelectronic device development more broadly through the study of the graphene-semiconductor interface. The results of this project will provide a new understanding of the mechanism required to achieve pinning of the carrier densities and ultimately to increase the high-temperature output power in these lasers. This contribution is significant because it will enable the redesign of the active and cladding regions of laser devices in order to increase the maximum cw output power and result in more efficient high temperature operation. Thus, antimonide-based semiconductor lasers would have the potential to be an enabling technology for mid-infrared applications in homeland security, environmental monitoring, and medical applications such as breath analysis for early detection of asthma in children. Outreach activities include video and curriculum development for K-12 students and teachers as well as for freshman engineers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自第一台激光器问世以来的60年里,半导体激光器的效率已经取得了巨大的进步,包括将多个阶段集成在一起,在重复的步骤中产生光,而不是在单一的界面上产生光,通过级联配置增加了输出功率。即使有了这些进步,这些设备还没有达到理论上的理想状态。该项目的目标是确定导致电流未转换为激光的损耗机制,并将这些知识应用于改进未来级联半导体激光器的设计。这将增加输出功率和效率,特别是对于在光谱中红外部分发射的设备,这一波长范围对环境监测、医学和国土安全(包括化学传感和红外对抗)的应用很重要。该方法不仅包括电流注入、光激发和光谱学,还包括将二维石墨烯片与含有元素周期表第三列和第五列元素的三维半导体合金集成在一起,以创建一个同时具有光学透明、导电和导热性能的顶部接触。提高效率有可能大幅降低输入功率需求和操作成本,同时增加便携性。这项工作中提出的课堂和实验室活动,包括制作视频和引人入胜的课程,将吸引K-12学生从事电气和计算机工程的职业,并将通过让她们接触本科和研究生水平的前沿研究,有助于留住女性和少数族裔学生。在基于锑化物的异质结构中采用ii型波段对准的带间级联激光器最近在3-6微米波长上取得了成功,这是化学传感、红外对抗和自由空间光通信等应用的重要光谱范围。然而,当这些激光器被驱动到超过阈值时,效率就会“下降”,从而降低了在连续波(cw)或单模操作中可获得的最大功率。高温下输出功率受限的物理原因尚不清楚。确定防止载流子钉住的基本机制将允许创建新的波函数工程方法,以提高这些激光器在室温或室温以上的最大输出功率。这将提高器件的效率,使超过阈值的注入载流子将有助于激光输出,而不会在自发发射或非辐射重组机制中丢失,从而大大降低输入功率要求和运行成本。触点将被优化以收集自发发射,并且限制行为的物理机制将通过光电流、光-光、光谱、电流-电压和泵-探针测量来量化,所有这些都通过分裂脊制造和/或透明石墨烯触点的集成而得到增强。石墨烯的高光学、电学和热导率不仅有助于数据的收集,还将通过石墨烯-半导体界面的研究更广泛地推动光电器件的发展。该项目的结果将为实现载流子密度的固定和最终增加这些激光器的高温输出功率所需的机制提供新的理解。这一贡献是重要的,因为它将使激光器件的有源和包层区域的重新设计,以增加最大连续波输出功率,并导致更有效的高温工作。因此,基于锑化物的半导体激光器将有潜力成为中红外应用于国土安全、环境监测和医疗应用(如用于早期检测儿童哮喘的呼吸分析)的使能技术。拓展活动包括为K-12学生和教师以及大一工程师开发视频和课程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical Pumping and Electrical Injection of a 3.6 μ m Interband Cascade Laser
3.6 μm 带间级联激光器的光泵浦和电注入
  • DOI:
    10.1109/jqe.2022.3146864
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Olafsen, Linda J.;Stephens, Kyler A.;Devries, Daniella R.
  • 通讯作者:
    Devries, Daniella R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Olafsen其他文献

Linda Olafsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Olafsen', 18)}}的其他基金

EAGER: Enhanced Optoelectronic Devices Through Integration of Single-Crystal Graphene and Bernal Bilayer and Trilayer Graphene
EAGER:通过单晶石墨烯与伯纳尔双层和三层石墨烯的集成增强光电器件
  • 批准号:
    1256113
  • 财政年份:
    2013
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Standard Grant
Acquisition of a Deep Ultraviolet/Infrared Mask Aligner for Microscale/Nanoscale Device Research and Education
采购深紫外/红外掩模对准器用于微尺度/纳米尺度器件研究和教育
  • 批准号:
    0114252
  • 财政年份:
    2001
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Standard Grant

相似国自然基金

LED中基于应力的载流子动力学机制及其对droop效应的影响研究
  • 批准号:
    11304048
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
GaN基蓝光LED内量子效率的温度droop效应研究
  • 批准号:
    11364034
  • 批准年份:
    2013
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Identification of dominant efficiency droop mechanism in GaN LED
GaN LED 中主要效率下降机制的识别
  • 批准号:
    521862-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Engage Grants Program
Microgrid Interconnections Control via Voltage Angle Droop Methods
通过电压角下垂方法进行微电网互连控制
  • 批准号:
    1611301
  • 财政年份:
    2016
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Standard Grant
Study on evaluation method for luminescence efficiency and efficiency droop mechanism in III-nitride-based LEDs
III族氮化物LED发光效率评价方法及效率下降机制研究
  • 批准号:
    23860062
  • 财政年份:
    2011
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Elucidation of efficiency droop mechanism in nitride semiconductorbased light emitting devices by scanning near field optical microscopy
通过扫描近场光学显微镜阐明氮化物半导体发光器件的效率下降机制
  • 批准号:
    23686003
  • 财政年份:
    2011
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Fundamental Studies of Efficiency Droop in III-Nitride Solid-State Lighting Devices
III 族氮化物固态照明器件效率下降的基础研究
  • 批准号:
    1102192
  • 财政年份:
    2011
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Standard Grant
Novel Approaches for High Efficiency Droop-Free III-Nitride Light-Emitting Diodes in Solid State Lighting
固态照明中高效无下垂 III 族氮化物发光二极管的新方法
  • 批准号:
    1028490
  • 财政年份:
    2010
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Continuing Grant
Research Initiation: Zero Droop S/H Circuits for On-Chip Tuning and Control of Analog Integrated Circuits
研究启动:用于模拟集成电路片上调谐和控制的零下降 S/H 电路
  • 批准号:
    8809365
  • 财政年份:
    1988
  • 资助金额:
    $ 35.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了