Partial Differential Equations and Variational Problems

偏微分方程和变分问题

基本信息

  • 批准号:
    0100260
  • 负责人:
  • 金额:
    $ 8.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator would like to continue his work on partialdifferential equations and variational problems. The first theme ofthis project, and also of the research of the PI over the past severalyears, is to study special sets associated to solutions to differentialequations and variational problems. The problems that the PI wouldcontinue to work on include the geometric structure of level sets, inparticular the nodal sets and the singular sets. The study is partlymotivated by the desire to understand to what extent the solutions canbe described quantitatively by polynomials or by homogeneous solutions.These problems have a close connection with other fields in mathematics,including several complex variables and algebraic geometry. A newresearch trend is the study of the relation between the growth of nodalsets and the growth of solutions themselves. It is expected that theyare closely related to each other. The second theme of this project isto study the isometric embedding of two-dimensional metrics in the threedimensional Euclidean space, both locally and globally. In general, theisometric embedding is based on the complicated Nash-Moser iteration,which requires detailed discussions of the linearized equations. Moreover,the global isometric embedding is expected to meet some topologicalobstacles. Difficulties arise when the Gaussian curvature changes itssign. Singular sets may appear even if the embedding exists.The problems of the singular sets originate from the material scienceand the control theory. Singular sets, as the name suggests, are thosesets where singularities occur. Precise definitions vary according toproblems where they arise. In reality it is impossible to eliminatesingular sets, the so-called "bad sets". An example is provided bycracks in the building material. Hence one of the central tasks is toinvestigate the conditions under which the singular sets can becontrolled and hence can be made small. Another application involvesthe high-performance computing, in particular the image processing. Oneproblem is to recover the image from a distorted copy and the differenceis measured exactly by some singular sets. It is highly expected thatsuch sets should be small enough to be neglected. The problems statedin the project are simplified mathematical models. It is the hope bythe investigator that the discussion of these mathematical problemswould improve the methods to control the singular sets in variousapplications.
首席研究员想继续他的工作偏微分方程和变分问题。这个项目的第一个主题,也是PI在过去几年中的研究主题,是研究与微分方程和变分问题的解相关的特殊集合。PI将继续研究的问题包括水平集的几何结构,特别是节点集和奇异集。本文的研究部分是为了了解解在多大程度上可以用多项式或齐次解来定量描述,这些问题与数学中的其他领域有着密切的联系,包括多复变函数和代数几何。一个新的研究趋势是研究解集的增长性与解本身的增长性之间的关系。可以预料,它们彼此之间有着密切的联系。本项目的第二个主题是研究二维度量在三维欧氏空间中的等距嵌入,包括局部和全局。通常,等距嵌入是基于复杂的Nash-Moser迭代,这需要详细讨论的线性方程。此外,整体等距嵌入预计会遇到一些拓扑障碍。当高斯曲率改变其符号时,困难就出现了。奇异集问题起源于材料科学和控制理论,它是一个复杂的问题。奇异集,顾名思义,就是那些出现奇异点的集合。精确的定义根据问题的出现而有所不同。在现实中,不可能消除奇异集,即所谓的“坏集”。建筑材料中的裂缝就是一个例子。因此,中心任务之一是调查的条件下,奇异集可以被控制,因此可以小。另一个应用涉及高性能计算,特别是图像处理。其中一个问题是如何从一个失真的拷贝中恢复图像,而这个差异是由一些奇异集精确度量的。人们高度期望这样的集合应该小到足以被忽略。该项目中所述的问题是简化的数学模型。研究者希望这些数学问题的讨论能够改进各种应用中控制奇异集的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Han其他文献

Understanding the Impact of HIV on MPOX Transmission in an MSM Population: A Mathematical Modeling Study
了解 HIV 对 MSM 人群中 MPOX 传播的影响:数学模型研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Omame;Qing Han;S. Iyaniwura;Adeniyi Ebenezer;N. Bragazzi;Xiaoying Wang;Jude Dzevela Kong;W. A. Woldegerima
  • 通讯作者:
    W. A. Woldegerima
Optimal regularity of minimal graphs in the hyperbolic space
双曲空间中最小图的最优正则性
Design and Synthesis of 60 degrees Dendritic Donor Ligands and Their Coordination-Driven Self-Assembly into Supramolecular Rhomboidal Metallodendrimers
60度树枝状供体配体的设计与合成及其配位驱动自组装成超分子菱形金属树枝状聚合物
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Qing Han;Quan-Jie Li;Jiuming He;Bingjie Hu;Hongwei Tan;Zeper Abliz;Cui-Hong Wang;Yihua Yu;Hai-Bo Yang
  • 通讯作者:
    Hai-Bo Yang
Interior estimates for the n-dimensional Abreu?s equation
n 维 Abreuï¤s 方程的内部估计
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bohui Chen;Qing Han;An-Min Li;Li Sheng
  • 通讯作者:
    Li Sheng
Metal-Organic Frameworks with Organogold(III) Complexes for Photocatalytic Amine Oxidation with Enhanced Efficiency and Selectivity
具有有机金 (III) 配合物的金属有机框架可提高光催化胺氧化效率和选择性
  • DOI:
    10.1002/chem.201803161
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Han;Yue Lin Wang;Min Sun;Chun Yi Sun;Shan Shan Zhu;Xin Long Wang;Zhong Min Su
  • 通讯作者:
    Zhong Min Su

Qing Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Han', 18)}}的其他基金

Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
  • 批准号:
    2305038
  • 财政年份:
    2023
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Degenerate Partial Differential Equations in Geometry
几何中的简并偏微分方程
  • 批准号:
    1404596
  • 财政年份:
    2014
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Geometry
几何中的偏微分方程
  • 批准号:
    1105321
  • 财政年份:
    2011
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0654261
  • 财政年份:
    2007
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    0354948
  • 财政年份:
    2004
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Variational Problems
偏微分方程和变分问题
  • 批准号:
    9801250
  • 财政年份:
    1998
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Differential Equations and Variational Problems
数学科学:非线性微分方程和变分问题
  • 批准号:
    9501122
  • 财政年份:
    1995
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了