Degenerate Partial Differential Equations in Geometry
几何中的简并偏微分方程
基本信息
- 批准号:1404596
- 负责人:
- 金额:$ 17.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Degenerate partial differential equations arise naturally in many subjects in mathematics, physics and engineering. However, the theory for degenerate partial differential equations is not well developed due to the complexity of the degeneracy. It is a common phenomenon that degeneracy causes a loss of derivatives for solutions. One of the central tasks is to identify optimal conditions under which classical solutions exist and possess nice properties. Such a task is reflected in all proposed problems. Our goal is to search for techniques to establish a priori estimates for perspective solutions under these optimal conditions. Breakthrough in this direction will have broad impacts to the whole field of degenerate partial differential equations and their applications.The investigator will carry out several research projects studying degenerate differential equations from Riemannian and complex geometry and general relativity. These include the study of Abreu's equations and extremal metrics on toric varieties, study of the generalized Jang equation and the Penrose inequality, investigation of the isometric embedding of closed surfaces in the 3-dimensional Euclidean space, and investigation of boundary behavior of minimal surfaces in the hyperbolic space. The main objectives are to understand the impact of the degeneracy on properties of solutions and to investigate the behavior of solutions near the sets of degeneracy. The discussion of the proposed mathematical problems will improve our understanding of more complicated degenerate partial differential equations in various applications.
退化偏微分方程在数学、物理和工程学的许多学科中都是自然产生的。然而,由于退化偏微分方程的复杂性,退化偏微分方程的理论还没有得到很好的发展。简并性导致解的导数损失是一个普遍现象。其中一个中心任务是确定经典解存在并具有良好性质的最优条件。所有提出的问题都反映了这一任务。我们的目标是寻找技术,建立先验估计的角度解决方案在这些最佳条件下。这一方向的突破将对整个退化偏微分方程及其应用领域产生广泛的影响。研究者将开展多个研究项目,从黎曼几何和复几何以及广义相对论的角度研究退化微分方程。其中包括研究Abreu方程和环面簇的极值度量,研究广义Jang方程和Penrose不等式,研究三维欧氏空间中闭曲面的等距嵌入,以及研究双曲空间中极小曲面的边界行为。主要目的是了解退化对解的性质的影响,并研究解在退化集附近的行为。对这些数学问题的讨论将有助于提高我们对更复杂的退化偏微分方程在各种应用中的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Han其他文献
Understanding the Impact of HIV on MPOX Transmission in an MSM Population: A Mathematical Modeling Study
了解 HIV 对 MSM 人群中 MPOX 传播的影响:数学模型研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew Omame;Qing Han;S. Iyaniwura;Adeniyi Ebenezer;N. Bragazzi;Xiaoying Wang;Jude Dzevela Kong;W. A. Woldegerima - 通讯作者:
W. A. Woldegerima
Optimal regularity of minimal graphs in the hyperbolic space
双曲空间中最小图的最优正则性
- DOI:
10.1007/s00526-015-0939-6 - 发表时间:
2015-11 - 期刊:
- 影响因子:0
- 作者:
Qing Han;Weiming Shen;Yue Wang - 通讯作者:
Yue Wang
Design and Synthesis of 60 degrees Dendritic Donor Ligands and Their Coordination-Driven Self-Assembly into Supramolecular Rhomboidal Metallodendrimers
60度树枝状供体配体的设计与合成及其配位驱动自组装成超分子菱形金属树枝状聚合物
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3.6
- 作者:
Qing Han;Quan-Jie Li;Jiuming He;Bingjie Hu;Hongwei Tan;Zeper Abliz;Cui-Hong Wang;Yihua Yu;Hai-Bo Yang - 通讯作者:
Hai-Bo Yang
Interior estimates for the n-dimensional Abreu?s equation
n 维 Abreuï¤s 方程的内部估计
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.7
- 作者:
Bohui Chen;Qing Han;An-Min Li;Li Sheng - 通讯作者:
Li Sheng
Metal-Organic Frameworks with Organogold(III) Complexes for Photocatalytic Amine Oxidation with Enhanced Efficiency and Selectivity
具有有机金 (III) 配合物的金属有机框架可提高光催化胺氧化效率和选择性
- DOI:
10.1002/chem.201803161 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Qing Han;Yue Lin Wang;Min Sun;Chun Yi Sun;Shan Shan Zhu;Xin Long Wang;Zhong Min Su - 通讯作者:
Zhong Min Su
Qing Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Han', 18)}}的其他基金
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Partial Differential Equations in Geometry
几何中的偏微分方程
- 批准号:
1105321 - 财政年份:2011
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0654261 - 财政年份:2007
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
- 批准号:
0354948 - 财政年份:2004
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Partial Differential Equations and Variational Problems
偏微分方程和变分问题
- 批准号:
0100260 - 财政年份:2001
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Partial Differential Equations and Variational Problems
偏微分方程和变分问题
- 批准号:
9801250 - 财政年份:1998
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Differential Equations and Variational Problems
数学科学:非线性微分方程和变分问题
- 批准号:
9501122 - 财政年份:1995
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
- 批准号:
22K20340 - 财政年份:2022
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
- 批准号:
1764248 - 财政年份:2018
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
- 批准号:
1939627 - 财政年份:2017
- 资助金额:
$ 17.62万 - 项目类别:
Studentship
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
- 批准号:
341250-2012 - 财政年份:2016
- 资助金额:
$ 17.62万 - 项目类别:
Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
- 批准号:
341250-2012 - 财政年份:2015
- 资助金额:
$ 17.62万 - 项目类别:
Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
- 批准号:
341250-2012 - 财政年份:2014
- 资助金额:
$ 17.62万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2013
- 资助金额:
$ 17.62万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
- 批准号:
341250-2012 - 财政年份:2013
- 资助金额:
$ 17.62万 - 项目类别:
Discovery Grants Program - Individual