Partial Differential Equations and Variational Problems
偏微分方程和变分问题
基本信息
- 批准号:9801250
- 负责人:
- 金额:$ 6.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2002-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9801250 ABSTRACT OF RESEARCH PROJECT Principal Investigator: Qing Han The principal investigator would like to continue his work on partial differential equations and variational problems. The main theme of this project, and also of the research of the PI over the past several years, is to study special sets associated to solutions to differential equations and variational problems. An important part of the study is the investigation of the asymptotic behavior of the solutions near these sets. The problems that the PI would continue to work on include the geometric structure of level sets, in particular the nodal sets and the singular sets. Such sets arise in the study of the axis of the optical director in the Erickson model of liquid crystals. These sets are also related to the singularities in the Ginzburg-Landau model in the superconductivity and in other geometric variational problems. This study is partly motivated by the desire to understand to what extent the solutions can be described quantitatively by polynomials or by homogeneous solutions. These problems have a close connection with other fields in mathematics, including several complex variables and algebraic geometry. The problems of the singular sets originate from material sciences and control theory. Singular sets, as the name suggests, are those sets where singularities occur. Precise definitions vary according to problems where they arise. In reality it is impossible to eliminate the singular sets, the so-called "bad sets". Hence one of the central tasks is to investigate under what condition the singular sets can be controlled and under what condition such sets are small. Another application involves high-performance computing, in particular image processing. One problem is to recover the image from a distorted copy and the difference is measured exactly by some singular sets. It is usually expected that such sets should be small enough to be neglected. T he problems mentioned above in the project are simplified mathematical models. It is the hope of the investigator that the discussion of these mathematical problems will improve the methods to control the singular sets in various applications.
DMS-9801250研究项目摘要 主要研究者:韩青 首席研究员想继续他的工作, 微分方程和变分问题。的主旋律 这个项目,以及PI在过去几年的研究 多年来,是研究特殊的集相关的解决方案,微分 方程和变分问题。这项研究的一个重要部分是 附近解的渐近行为的研究 这些集。PI将继续研究的问题包括 水平集的几何结构,特别是节点集, 奇异集这样的集合出现在研究的轴的 埃里克森液晶模型中的光学指向矢。这些集合 也与金兹伯格-朗道模型中的奇点有关, 超导性和其他几何变分问题。 这项研究的部分动机是为了了解 在某种程度上,解决方案可以用多项式或 均匀的解决方案。这些问题与 数学中的其他领域,包括几个复杂的变量, 代数几何 奇异集问题起源于材料科学 控制理论。奇异集,顾名思义,就是那些 奇点发生的地方。精确的定义因 问题出现的地方。在现实中, 奇异集合,也就是所谓的“坏集合”因此, 任务是研究在什么条件下奇异集可以 控制和在什么条件下这样的集合是小的。另一 应用程序涉及高性能计算,特别是 图像处理一个问题是从失真的图像中恢复图像。 复制和差异是由一些奇异集精确测量。它 通常认为,这样的集合应该足够小,可以忽略不计。 本课题中的上述问题均为简化数学问题, 模型调查人员希望,这些问题的讨论 数学问题将改善方法来控制奇异 在各种应用中设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Han其他文献
Understanding the Impact of HIV on MPOX Transmission in an MSM Population: A Mathematical Modeling Study
了解 HIV 对 MSM 人群中 MPOX 传播的影响:数学模型研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew Omame;Qing Han;S. Iyaniwura;Adeniyi Ebenezer;N. Bragazzi;Xiaoying Wang;Jude Dzevela Kong;W. A. Woldegerima - 通讯作者:
W. A. Woldegerima
Optimal regularity of minimal graphs in the hyperbolic space
双曲空间中最小图的最优正则性
- DOI:
10.1007/s00526-015-0939-6 - 发表时间:
2015-11 - 期刊:
- 影响因子:0
- 作者:
Qing Han;Weiming Shen;Yue Wang - 通讯作者:
Yue Wang
Design and Synthesis of 60 degrees Dendritic Donor Ligands and Their Coordination-Driven Self-Assembly into Supramolecular Rhomboidal Metallodendrimers
60度树枝状供体配体的设计与合成及其配位驱动自组装成超分子菱形金属树枝状聚合物
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3.6
- 作者:
Qing Han;Quan-Jie Li;Jiuming He;Bingjie Hu;Hongwei Tan;Zeper Abliz;Cui-Hong Wang;Yihua Yu;Hai-Bo Yang - 通讯作者:
Hai-Bo Yang
Interior estimates for the n-dimensional Abreu?s equation
n 维 Abreuï¤s 方程的内部估计
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.7
- 作者:
Bohui Chen;Qing Han;An-Min Li;Li Sheng - 通讯作者:
Li Sheng
Metal-Organic Frameworks with Organogold(III) Complexes for Photocatalytic Amine Oxidation with Enhanced Efficiency and Selectivity
具有有机金 (III) 配合物的金属有机框架可提高光催化胺氧化效率和选择性
- DOI:
10.1002/chem.201803161 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Qing Han;Yue Lin Wang;Min Sun;Chun Yi Sun;Shan Shan Zhu;Xin Long Wang;Zhong Min Su - 通讯作者:
Zhong Min Su
Qing Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Han', 18)}}的其他基金
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Degenerate Partial Differential Equations in Geometry
几何中的简并偏微分方程
- 批准号:
1404596 - 财政年份:2014
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Partial Differential Equations in Geometry
几何中的偏微分方程
- 批准号:
1105321 - 财政年份:2011
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0654261 - 财政年份:2007
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
- 批准号:
0354948 - 财政年份:2004
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Partial Differential Equations and Variational Problems
偏微分方程和变分问题
- 批准号:
0100260 - 财政年份:2001
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Differential Equations and Variational Problems
数学科学:非线性微分方程和变分问题
- 批准号:
9501122 - 财政年份:1995
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 6.02万 - 项目类别:
Continuing Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant
CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations
CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络
- 批准号:
2214925 - 财政年份:2023
- 资助金额:
$ 6.02万 - 项目类别:
Standard Grant