QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing

QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器

基本信息

  • 批准号:
    2326784
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Cold atoms are the workhorses of precision measurements. They provide universal standards for time and frequency, and stable platforms for tests of fundamental physics such as the equivalence principle between gravitational and inertial mass. Despite the transformative potential for mobile devices based on cold atoms to revolutionize timing, or navigation without Global Positioning System (GPS), cold-atom clocks and interferometers have largely remained laboratory-scale devices. The limited use of cold-atom systems outside of laboratory environments is due to the size and complexity of most cold-atom instruments, as well as their sensitivity to physical conditions that are not being directly measured, such as ambient temperature variation, stray electromagnetic fields, and subtle deformation of the components. The aim of this project is to overcome implementation challenges with cold-atom sensors and demonstrate compact and mobile atomic clocks and accelerometers that maintain state-of-the-art performance in the field, outside of laboratory conditions.This project will develop two cold-atom quantum sensing platforms that share a common technology base and have complementary functionalities. A transportable cold-rubidium atom interferometer will provide differential acceleration measurements, and a portable cesium optical lattice clock will support timing in remote locations. These devices will be useful for applications in navigation, fundamental physics studies, and spatially resolved measurements of gravitational fields. To miniaturize and ruggedize these cold-atoms systems, the project will develop and integrate a set of photonic chip-scale hardware and algorithms, comprising a “quantum sensor toolkit”, that include lasers and optics, optimized quantum algorithms for sensor fusion and calibration, and optimal leveraging of entanglement. These approaches will broaden the utility of cold-atom sensors in real-world scenarios and enable scientific investigations outside of the lab, for example, gravity surveys on challenging terrains and precision measurements at the poles or in space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冷原子是精密测量的主力。它们为时间和频率提供了通用标准,并为基础物理测试提供了稳定的平台,例如引力和惯性质量之间的等价性原理。尽管基于冷原子的移动设备具有革命性的潜力,可以在没有全球定位系统(GPS)的情况下改变计时或导航,但冷原子时钟和干涉仪在很大程度上仍然是实验室规模的设备。冷原子系统在实验室环境之外的有限使用是由于大多数冷原子仪器的尺寸和复杂性,以及它们对无法直接测量的物理条件的敏感性,例如环境温度变化、杂散电磁场和部件的细微变形。该项目的目的是克服冷原子传感器的实施挑战,展示紧凑和移动的原子钟和加速计,在实验室条件外保持现场最先进的性能。该项目将开发两个冷原子量子传感平台,共享共同的技术基础,具有互补的功能。一个可移动的冷原子干涉仪将提供差动加速度测量,一个便携式铯光学格子时钟将支持远程位置的计时。这些设备将用于导航、基础物理研究和引力场的空间分辨测量。为了使这些冷原子系统小型化和坚固化,该项目将开发和集成一套光子芯片级的硬件和算法,包括一个包括激光和光学的“量子传感器工具包”,用于传感器融合和校准的优化量子算法,以及最优的纠缠利用。这些方法将扩大冷原子传感器在现实世界中的用途,并使实验室外的科学调查成为可能,例如,在具有挑战性的地形上进行重力测量,以及在极地或太空进行精确测量。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Choy其他文献

Jennifer Choy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Choy', 18)}}的其他基金

CAREER: Solid-state quantum navigation and timekeeping
职业:固态量子导航和计时
  • 批准号:
    2339862
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了