Mechanisms of nutrient sensing and homeostasis in plants

植物营养感应和稳态机制

基本信息

  • 批准号:
    2344945
  • 负责人:
  • 金额:
    $ 138.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Plants require light, carbon dioxide, water, and mineral nutrients to grow. While sunlight and carbon dioxide are usually plentiful, water and mineral nutrients are often limiting factors for plant growth, making irrigation and fertilizers the two most costly inputs for crop production and sustainable agriculture. However, reliance on fertilizers is not a long-term solution because both production and application of fertilizers cause pollution and threaten the sustainability of our environment. An alternative strategy is to breed crops with high nutrient use efficiency, but this requires understanding how plants acquire and utilize each nutrient, which is the subject of this research project. Discoveries from the project will be applied to crop improvement through ongoing collaborations with international and USDA labs associated with the PI’s laboratory. The research will have an additional impact on undergraduate and graduate education through courses the PI teaches at UC Berkeley and through independent research programs in the PI’s laboratory. The project will also enhance the outreach efforts that focus on local high schools to encourage students of underrepresented groups to become interested in biology. The project will support diversity and broaden participation of disadvantaged individuals, including support of one researcher with a disability. Membrane transport is important for mineral nutrient homeostasis at the cell and whole plant level. To thrive, plants have evolved intricate mechanisms that maintain mineral homeostasis at the cellular and whole-plant level despite constantly changing nutrient status in soil. The PI’s lab discovered the calcium response modules (CBL-CIPK) that form a signaling network for nutrient sensing. New results indicate that plants also utilize a conserved nutrient sensor, TARGET OF RAPAMYCIN (TOR), to integrate the high potassium (K) nutrient status to initiate “growth mode” and suppress the low-K response by degrading the CBL-CIPK modules. In a reciprocal manner, low-K-induced activation of CBL-CIPK network represses TOR activity and switch plants to “adaptation mode”, establishing a conceptual framework on how plants adapt to the changing nutrient status in the soil. The same CBL-CIPK network activates sequestration of magnesium (Mg) into vacuole in response to high-Mg, providing a possible mechanism for integrating different nutrients cues. The recent discovery of Mg-transporters responsible for Mg-sequestration into (and remobilization out of) the vacuole set the stage for connecting the CBL-CIPK modules to the Mg-transporters, constructing a molecular relay from high Mg status in the serpentine soils (the signal), to the activation of CBL-CIPK modules (the signaling), and Mg sequestration into the vacuole (the response). The specific objectives of this project are: 1. To identify the mechanisms by which the dual CBL-CIPK pathways are activated by low-K status; 2. To identify the events leading to K-induced activation of TOR and inactivation of CBL-CIPK network; and 3. To dissect the CBL-CIPK pathway that governs Mg fluxes across the tonoplast. The research will benefit from the unique expertise of PI’s group in the model plant systems that are amenable to patch-clamp and cell biology analysis in combination with genetic and biochemical approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物生长需要光、二氧化碳、水和矿物质营养。虽然阳光和二氧化碳通常充足,但水和矿物质营养素往往是植物生长的限制因素,使灌溉和肥料成为作物生产和可持续农业的两种最昂贵的投入。然而,依赖化肥并不是一个长期的解决办法,因为化肥的生产和使用都会造成污染,威胁到我们环境的可持续性。另一种策略是培育具有高养分利用效率的作物,但这需要了解植物如何获得和利用每种养分,这就是本研究项目的主题。该项目的发现将通过与PI实验室相关的国际和美国农业部实验室的持续合作应用于作物改良。这项研究将通过PI在加州大学伯克利分校教授的课程以及PI实验室的独立研究项目对本科生和研究生教育产生额外的影响。该项目还将加强以当地高中为重点的外联工作,鼓励代表性不足群体的学生对生物学感兴趣。该项目将支持多样性,扩大弱势个人的参与,包括支持一名残疾研究人员。膜转运对于植物细胞和整个植物水平的矿质营养平衡具有重要意义。为了茁壮成长,植物已经进化出复杂的机制,在细胞和整个植物水平上保持矿物质的体内平衡,尽管土壤中的营养状况不断变化。PI的实验室发现了钙反应模块(CBL-CIPK),形成了营养传感的信号网络。新的研究结果表明,植物还利用保守的营养传感器,目标的RAPAMYCIN(TOR),整合高钾(K)营养状态,启动“生长模式”,并通过降解CBL-CIPK模块抑制低钾反应。低钾诱导的CBL-CIPK网络的激活以相互作用的方式抑制TOR活性并将植物切换到“适应模式”,从而建立了植物如何适应土壤中不断变化的营养状况的概念框架。相同的CBL-CIPK网络激活镁(Mg)封存到液泡中以响应高镁,为整合不同营养素线索提供了可能的机制。最近发现的镁转运蛋白负责镁螯合进入(和再动员出)的液泡设置的阶段,连接CBL-CIPK模块的镁转运蛋白,构建一个分子中继从高镁状态的蛇纹石土壤(信号),激活CBL-CIPK模块(信号),镁螯合进入液泡(响应)。本项目的具体目标是:1.明确低钾状态激活CBL-CIPK双通路的机制; 2.鉴定导致K诱导的TOR激活和CBL-CIPK网络失活的事件;和3.剖析控制Mg通过液泡膜的CBL-CIPK途径。该研究将受益于PI团队在模型植物系统方面的独特专业知识,这些系统适合于膜片钳和细胞生物学分析,并结合遗传和生物化学方法。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Luan其他文献

Isolation and characterization of a Raf gene from Chinese shrimp Fenneropenaeus chinensis in response to white spot syndrome virus infection
中国明对虾响应白斑综合症病毒感染的 Raf 基因的分离和表征
  • DOI:
    10.1016/j.fsi.2018.09.043
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xupeng Li;Xianhong Meng;Sheng Luan;Kun Luo;Baoxiang Cao;Baolong Chen;Jie Kong
  • 通讯作者:
    Jie Kong
PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice
光敏叶卷 1 编码一种多聚半乳糖醛酸酶,可改变水稻的细胞壁结构和耐旱性
  • DOI:
    10.1111/nph.16899
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Guangheng Zhang;Xin Hou;Li Wang;Jing Xu;Jian Chen;Xue Fu;Nianwei Shen;Jinqiang Nian;Zhuanzhuan Jiang;Jiang Hu;Li Zhu;Yuchun Rao;Yafei Shi;Deyong Ren;Guojun Dong;Zhenyu Gao;Longbiao Guo;Qian Qian;Sheng Luan
  • 通讯作者:
    Sheng Luan
PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice
  • DOI:
    DOI:10.1111/nph.16899
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Guangheng Zhang;Xin Hou;Li Wang;Jing Xu;Jian Chen;Xue Fu;Nianwei Shen;Jinqiang Nian;Zhuanzhuan Jiang;Jiang Hu;Li Zhu;Yuchun Rao;Yafei Shi;Deyong Ren;Guojun Dong;Zhenyu Gao;Longbiao Guo;Qian Qian;Sheng Luan
  • 通讯作者:
    Sheng Luan
Erratum to: Vol. 35 No. 1 Publisher’s Erratum
  • DOI:
    10.1007/s00343-017-7466-6
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Shuangyan He;Mingxia He;Jürgen Fischer;Dongliang Yuan;Peng Xu;Tengfei Xu;Xianping Yang;Leonid Sokoletsky;Xiaodao Wei;Fang Shen;Juhong Zou;Maohua Guo;Songxue Cui;Wu Zhou;Dalu Gao;Guangzhen Jin;Xianqing Lü;Fuwen Qiu;Wendong Fang;Aijun Pan;Jing Cha;Shanwu Zhang;Jiang Huang;Tao Wang;Yongzhou Cheng;Xiaoyan Chen;Zhaopu Liu;Xiaohua Long;Zhishuai Hou;Haishen Wen;Jifang Li;Feng He;Qun Liu;Jinhuan Wang;Biao Guan;Qinglong Wang;Md. Shahjahan;Md. Farajul Kabir;Kizar Ahmed Sumon;Lipi Rani Bhowmik;Harunur Rashid;Shu Li;Kefu Yu;Jianxin Zhao;Yuexing Feng;Tianran Chen;Shun Zhou;Yichao Ren;Christopher M. Pearce;Shuanglin Dong;Xiangli Tian;Qinfeng Gao;Fang Wang;Liming Liu;Rongbin Du;Xiaoling Zhang;Shuanglin Dong;Shichun Sun;Song Feng;Jianing Lin;Song Sun;Fang Zhang;Zhipeng Zhang;Xuexi Tang;Haitian Tang;Jingjing Song;Jian Zhou;Hongjun Liu;Qixiang Wang;Kuimei Qian;Xia Liu;Yuwei Chen;Chengjun Sun;Fenghua Jiang;Wei Gao;Xiaoyun Li;Yanzhen Yu;Xiaofei Yin;Yong Wang;Haibing Ding;Zhongmin Sun;Yongqiang Wang;Pengcheng Yan;Hui Guo;Jianting Yao;Jiro Tanaka;Hiroshi Kawai;Na Song;Muyan Chen;Tianxiang Gao;Takashi Yanagimoto;Xia Lu;Sheng Luan;Jie Kong;Longyang Hu;Yong Mao;Shengping Zhong;Yan Liu;Weihong Zhao;Caiyan Li;Hui Miao
  • 通讯作者:
    Hui Miao
From receptor-like kinases to calcium spikes: what are the missing links?
从受体样激酶到钙尖峰:缺失的环节是什么?
  • DOI:
    10.1093/mp/ssu092
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Feng Yu;Wang Tian;Sheng Luan
  • 通讯作者:
    Sheng Luan

Sheng Luan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Luan', 18)}}的其他基金

Regulation of nutrient homeostasis by the CBL-CIPK calcium sensor-kinase network in Arabidopsis
拟南芥中 CBL-CIPK 钙传感器激酶网络对营养稳态的调节
  • 批准号:
    2041585
  • 财政年份:
    2021
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Standard Grant
Conference: 2019 Organellar Channels and Transporters GRC/GRS; August 3-9, 2019; Mount Snow, VT
会议:2019细胞器通道和转运蛋白GRC/GRS;
  • 批准号:
    1906099
  • 财政年份:
    2019
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Standard Grant
Regulation of nutrient homeostasis by the CBL-CIPK calcium-based sensor-kinase network in plants
植物中 CBL-CIPK 钙基传感器激酶网络对营养稳态的调节
  • 批准号:
    1714795
  • 财政年份:
    2017
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Standard Grant
MCA-PGR: Genetic and Genomic Approaches to Understanding Low-K Tolerance in Rice
MCA-PGR:了解水稻低钾耐受性的遗传和基因组方法
  • 批准号:
    1339239
  • 财政年份:
    2013
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Continuing Grant
2010 Arabidopsis/AFGN Collaborative Project: An Exemplary Calcium Signaling Network in Plant Stress Responses
2010 拟南芥/AFGN 合作项目:植物应激反应中的钙信号网络示例
  • 批准号:
    0723931
  • 财政年份:
    2008
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Continuing Grant
Chloroplast Starch Metabolism: A New Regulatory Junction for Redox and Protein Phosphorylation
叶绿体淀粉代谢:氧化还原和蛋白质磷酸化的新调节接头
  • 批准号:
    0642220
  • 财政年份:
    2007
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Continuing Grant
Dissecting the CBL-CIPK Network in Plant Signal Transduction
剖析植物信号转导中的 CBL-CIPK 网络
  • 批准号:
    0316135
  • 财政年份:
    2003
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Continuing Grant
US-Germany Cooperative Research: Identification and Analysis of CBL1 Calcium Sensor/CIPK1 Target Proteins
美德合作研究:CBL1钙传感器/CIPK1靶蛋白的鉴定与分析
  • 批准号:
    0233146
  • 财政年份:
    2003
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Standard Grant
Collaborative Arabidopsis 2010 Project : Genomics and Proteomics Approaches to the Function of Tyrosine Phosphatases in Arabidopsis
拟南芥 2010 合作项目:拟南芥酪氨酸磷酸酶功能的基因组学和蛋白质组学方法
  • 批准号:
    0209823
  • 财政年份:
    2002
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Continuing Grant
A Novel Calcium Sensor and Its Target Kinase in Arabidopsis
拟南芥中新型钙传感器及其靶激酶
  • 批准号:
    0078233
  • 财政年份:
    2000
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

LncRNA-G8在葡萄糖饥饿应激时调控肿瘤细胞DNA损伤修复的功能和机制研究
  • 批准号:
    32000526
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
  • 批准号:
    31970707
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
自噬信号调控自噬前体招募WIPI2蛋白的机制和功能
  • 批准号:
    31970694
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
葡萄糖缺乏诱导的长链非编码RNA-GDLR促进肝癌细胞存活和增殖的作用及机制研究
  • 批准号:
    91957108
  • 批准年份:
    2019
  • 资助金额:
    86.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Nutrient sensing mechanisms underlying the metabolic effects of dietary proteins in obesity and type 2 diabetes
膳食蛋白质对肥胖和 2 型糖尿病代谢影响的营养传感机制
  • 批准号:
    479374
  • 财政年份:
    2023
  • 资助金额:
    $ 138.43万
  • 项目类别:
    Operating Grants
Mechanisms of amino-acid sensing by the GATOR complex
GATOR 复合物的氨基酸传感机制
  • 批准号:
    10716059
  • 财政年份:
    2023
  • 资助金额:
    $ 138.43万
  • 项目类别:
Genetic mechanisms of signal integration in the nutrient sensing network
营养传感网络中信号整合的遗传机制
  • 批准号:
    10710987
  • 财政年份:
    2023
  • 资助金额:
    $ 138.43万
  • 项目类别:
Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
  • 批准号:
    10703228
  • 财政年份:
    2022
  • 资助金额:
    $ 138.43万
  • 项目类别:
Amino acid sensing mechanisms in beta and alpha cells
β 和 α 细胞中的氨基酸传感机制
  • 批准号:
    10655636
  • 财政年份:
    2022
  • 资助金额:
    $ 138.43万
  • 项目类别:
Elucidating mechanisms of acetylcholine signaling in bacterial biofilms
阐明细菌生物膜中乙酰胆碱信号传导机制
  • 批准号:
    10538066
  • 财政年份:
    2022
  • 资助金额:
    $ 138.43万
  • 项目类别:
Novel Nutrient Functions and Sensing Mechanisms
新颖的营养功能和传感机制
  • 批准号:
    10318176
  • 财政年份:
    2021
  • 资助金额:
    $ 138.43万
  • 项目类别:
Novel Nutrient Functions and Sensing Mechanisms
新颖的营养功能和传感机制
  • 批准号:
    10799400
  • 财政年份:
    2021
  • 资助金额:
    $ 138.43万
  • 项目类别:
Novel Nutrient Functions and Sensing Mechanisms
新颖的营养功能和传感机制
  • 批准号:
    10535436
  • 财政年份:
    2021
  • 资助金额:
    $ 138.43万
  • 项目类别:
Molecular mechanisms of hypervirulence in antibiotic-resistant Pseudomonas aeruginosa
耐抗生素铜绿假单胞菌高毒力的分子机制
  • 批准号:
    10668448
  • 财政年份:
    2020
  • 资助金额:
    $ 138.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了