4D-bioprinting of vascularized bone tissue and evaluation of blood vessel and bone formation in an orthotopic bone defect model

血管化骨组织的 4D 生物打印以及原位骨缺损模型中血管和骨形成的评估

基本信息

项目摘要

In the first funding period, we developed important basics for the bioprinting of vascularized bone tissue. In this context, we identified two suitable hydrogels, which were able to support blood vessel formation starting from bioprinted endothelial cells (HUVECs) and osteogenic differentiation of mesenchymal stem cells (MSCs), respectively. Moreover, we developed a 3D bioprinter which combines two bioprinting technologies, namely Drop on Demand (DoD) and extrusion printing.Using this bioprinter, we printed stabile cubes with edge lengths of 1 cm. In these cubes, the vascular component was realized by DoD printing of high density cell suspensions of HUVECs in fibrin-hydrogels, whereas the bone component was realized by extrusion printing of MSCs in a hydrogel composed of fibrin, gelatin, hyaluronic acid, glycerol and hydroxyapatite (osteo-Hydrogel). We have been able to show in vitro, as well as in vivo in a subcutaneous implantation model, that the bioprinted HUVECs were able to form blood vessels and the bioprinted MSCs were able to form a calcified bone matrix.The elastic modulus of the bioprinted cubes was around 1 kPa, which corresponds to native human soft tissue. However, the rigidity of human native bone is around 1x105 kPA and therefore about 100.000 times higher than the actual E-modulus of our current constructs.Therefore, on major goal of this continued project is to develop a combined printing procedure for printing cell-containing hydrogels and stability-generating thermoplastics and/or calcium phosphate cements (CPC) in order to produce artificial vascularized bone tissue with a physiological relevant rigidity which should resemble human native bone. The second goal is the implementation of the so called 4D-bioprinting (“time” as the fourth dimension) in which the temporal and spatial maturation of the construct should be controlled by the spatially resolved printing of growth factors, differentiation factors and/or additional cell entities. The third major goal of the continued project is the evaluation of the 4D-combination constructs in a physiologically-relevant orthotopic bone defect model in terms of vascularization and bone formation. In this context, we also want to investigate whether the quantity and/or quality of blood vessel formation and bone formation can be steered via modulation of the elastic moduli of the printed constructs.
在第一个资助期,我们开发了血管化骨组织生物打印的重要基础。在这种情况下,我们确定了两种合适的水凝胶,它们能够分别支持从生物打印的内皮细胞(HUVEC)开始的血管形成和间充质干细胞(MSC)的成骨分化。此外,我们还开发了一种3D生物打印机,它结合了两种生物打印技术,即按需喷墨(DoD)和挤出打印。使用这种生物打印机,我们打印了边长为1 cm的稳定立方体。在这些立方体中,血管组分通过DoD打印HUVEC在纤维蛋白-水凝胶中的高密度细胞悬浮液来实现,而骨组分通过在由纤维蛋白、明胶、透明质酸、甘油和羟基磷灰石组成的水凝胶(骨-水凝胶)中挤出打印MSC来实现。我们已经能够在体外以及在皮下植入模型中的体内显示,生物打印的HUVEC能够形成血管,生物打印的MSC能够形成钙化的骨基质。生物打印的立方体的弹性模量约为1 kPa,这对应于天然的人体软组织。然而,人类天然骨的刚度约为1 × 105 kPA,因此比我们目前构建体的实际E模量高约100.000倍。该持续项目的主要目标是开发一种用于打印含细胞水凝胶和稳定性生成热塑性塑料和/或磷酸钙水泥(CPC)的组合打印程序以便产生具有生理相关硬度的人造血管化骨组织,该硬度应类似于人的天然骨。第二个目标是实现所谓的4D生物打印(“时间”作为第四维),其中构建体的时间和空间成熟应该通过生长因子、分化因子和/或另外的细胞实体的空间分辨打印来控制。继续项目的第三个主要目标是在生理相关的原位骨缺损模型中评价4D组合结构的血管化和骨形成。在这种情况下,我们还想研究是否可以通过调节打印结构的弹性模量来控制血管形成和骨形成的数量和/或质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Günter Finkenzeller (†)其他文献

Professor Dr. Günter Finkenzeller (†)的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Günter Finkenzeller (†)', 18)}}的其他基金

Preclinical in vitro validation and in vivo evaluation of a new Biohybrid-Gradient-Layersystem-non woven as a carrier matrix for a vascular component for the supply of epithelial soft tissue defects
新型生物混合梯度层系统——无纺布作为血管成分的载体基质,用于供应上皮软组织缺损的临床前体外验证和体内评估
  • 批准号:
    255953801
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Interaktion zwischen Osteoblasten und Endothelzellen: Untersuchungen zur posttranskriptionellen Regulation der osteoblastären Expression der alkalischen Phosphatase (ALP) und des Platelet-derived growth factor receptor (PDGF-R) alpha
成骨细胞与内皮细胞的相互作用:成骨细胞碱性磷酸酶(ALP)和血小板源性生长因子受体(PDGF-R)α表达的转录后调控研究
  • 批准号:
    197473547
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identifizierung der molekularen Mechanismen der Endothelzell-vermittelten Regulation der osteoblastären Genexpression der alkalischen Phosphatase (ALP) und des Platelet-derived growth factor receptor (PDGF-R) alpha.
鉴定内皮细胞介导的成骨细胞基因表达调节的碱性磷酸酶(ALP)和血小板源性生长因子受体(PDGF-R)α的分子机制。
  • 批准号:
    53674811
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchungen zur Optimierung der Neovaskularisation und der Knochenregeneration in einem orthotopen Knochendefektmodell durch Ko-Implantation mesenchymaler Stammzellen und humaner Endothelzellen
间充质干细胞与人内皮细胞共植入原位骨缺损模型中新生血管和骨再生优化的研究
  • 批准号:
    16216652
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identifizierung der molekularen Mechanismen der Onkogen-induzierten, Sp 1 vermittelten Aktivierung des VEGF Promotors
鉴定癌基因诱导、Sp 1 介导的 VEGF 启动子激活的分子机制
  • 批准号:
    5191424
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

A Bioprinted Volumetric Model of Vascularized Glioblastoma
血管化胶质母细胞瘤的生物打印体积模型
  • 批准号:
    10717766
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
  • 批准号:
    10373269
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
  • 批准号:
    10545037
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Novel 3D Bioprinting Optimized by Deep Neural Networks for Vascularized Liver Tissue
通过深度神经网络优化血管化肝脏组织的新型 3D 生物打印
  • 批准号:
    576227-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
  • 批准号:
    10576353
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
  • 批准号:
    10353393
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collagen microfibers size effect on the reconstruction of vascularized adipose tissues for soft tissues regeneration applications
胶原微纤维尺寸对软组织再生应用中血管化脂肪组织重建的影响
  • 批准号:
    20K20199
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D bioprinting of vascularized hydrogel
血管化水凝胶的 3D 生物打印
  • 批准号:
    517155-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了