Understanding the Luminescence Efficiency of Silicon Quantum Dots
了解硅量子点的发光效率
基本信息
- 批准号:282295808
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Significant part of the optical properties of Si QDs is either still under controversial debate or completely unknown or was out of experimental reach up to now. This cooperation project aims to clarify several important properties that are required to obtain a comprehensive picture of the physical mechanisms and limits of the optical performance of 0 dimensional silicon nanostructures. The motivation for this study is two-fold: On the one hand, fundamental semiconductor science will benefit in general from a comprehensive understanding of the size effects in indirect quantum dots such as Silicon that occur when the dimensions are reduced below the exciton Bohr radius. However, apart from this well justified academic interest, silicon represents the technologically most important and virtually omnipresent semiconductor. The aggressive down-scaling of microelectronics industry is progressively reducing the active silicon volumes into a size range where quantum confinement effects start to play a major role. Hence, extensive knowledge is mandatory including the cross-talking of such adjacent quantum dots. For free standing Si QDs the light emission efficiency of Si QDs can easily reach 25% and even ~50% were reported. Compared to the bulk Si quantum yield of 10-5 the reduction of the dimensions to 5 nm opens a gate into a completely new world of applications. Currently, silicon optoelectronics is able to modify, guide, switch and detect light but it is not able to efficiently generate light from electricity. However, the light sources in optoelectronics are often made of III-V semiconductors which cannot be integrated on the material level into microelectronic circuits (Si is a dopant for many III-V materials and those are mostly mid-gap defect states in Si). Realistically, there is still a long way to go until e.g. optical on-chip communication can be solely fabricated from Si-based materials. But it can be taken for granted that Si nanostructures will be the pivotal point of this technology evolution. Therefore, intense research on fundamental optical properties and the principal limits of the optical performance of Si quantum dots is important. In detail the following objectives will be investigated in details: (1) Absorption Cross Section (ACS) of Si QDs, (2) Quantum Yield of Si QDs, and (3) Interaction of the Dielectric Matrix with Si QDs.
到目前为止,硅量子点的光学性质的重要部分仍然处于有争议的争论中,或者完全未知,或者是实验无法达到的。该合作项目旨在阐明获得0维硅纳米结构光学性能的物理机制和限制的全面图片所需的几个重要特性。这项研究的动机是双重的:一方面,基础半导体科学将从全面理解间接量子点(如硅)的尺寸效应中受益,当尺寸减小到激子玻尔半径以下时会发生这种效应。然而,除了这种合理的学术兴趣,硅代表了技术上最重要的和几乎无处不在的半导体。微电子工业的积极缩小规模正在逐步将有源硅体积减小到量子限制效应开始发挥主要作用的尺寸范围内。因此,广泛的知识是强制性的,包括这种相邻量子点的串扰。对于自支撑的Si QD,Si QD的发光效率可以容易地达到25%,甚至~50%。与10-5的体硅量子产率相比,尺寸减小到5 nm打开了一扇通往全新应用世界的大门。目前,硅光电子学能够修改,引导,切换和检测光,但它不能有效地从电力中产生光。然而,光电子学中的光源通常由III-V族半导体制成,其不能在材料水平上集成到微电子电路中(Si是许多III-V族材料的掺杂剂,并且这些材料主要是Si中的中间带隙缺陷态)。实际上,还有很长的路要走,直到例如光片上通信可以单独由Si基材料制造。但可以肯定的是,硅纳米结构将是这一技术发展的关键点。因此,深入研究硅量子点的基本光学性质和限制其光学性能的主要因素是非常重要的。具体而言,将详细研究以下目标:(1)Si量子点的吸收截面(ACS),(2)Si量子点的量子产率,以及(3)介电基质与Si量子点的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Margit Zacharias其他文献
Professorin Dr. Margit Zacharias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Margit Zacharias', 18)}}的其他基金
Charge Sensitivity Control of Potentiometric Nanobiosensors
电位纳米生物传感器的电荷灵敏度控制
- 批准号:
461003068 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Pore evolution in metal assisted chemically etched (MACE) porous Si
金属辅助化学蚀刻(MACE)多孔硅中的孔隙演化
- 批准号:
256552060 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Nanostructures based on Si nanocrystals: Growth machanism, chemical matrix and basic physical and electronic properties
基于硅纳米晶的纳米结构:生长机制、化学基质以及基本物理和电子特性
- 批准号:
179895005 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Innovative Methoden der Nanodotierung
纳米掺杂的创新方法
- 批准号:
102439573 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Reinhart Koselleck Projects
Zentralprojekt: Koordination des DFG-Schwerpunktes "Nanodrähte und Nanoröhren"
中心项目:DFG 优先领域“纳米线和纳米管”的协调
- 批准号:
5430534 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Surface modification of Si and ZnO nanowires by atomic layer deposition and interface reaction investigated in the context of optics and electronics
在光学和电子学领域研究通过原子层沉积和界面反应对 Si 和 ZnO 纳米线进行表面改性
- 批准号:
5428604 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Photonic structures based on silicon: Characterization and physical properties of Si-nanocrystals with defined sizes
基于硅的光子结构:具有确定尺寸的硅纳米晶体的表征和物理性质
- 批准号:
5353002 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Active emitting 3D Photonic Crystals prepared by direct wafer bonding
通过直接晶圆键合制备有源发射 3D 光子晶体
- 批准号:
5318398 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
- 批准号:
24K17691 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
TS: The University of Texas at Arlington Luminescence Laboratory
TS:德克萨斯大学阿灵顿发光实验室
- 批准号:
2350175 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
- 批准号:
2327493 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
- 批准号:
23H01786 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhanced Circularly Polarized Luminescence of Single Molecular Layers
单分子层的增强圆偏振发光
- 批准号:
22KF0260 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
- 批准号:
10876727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Time-of-flight positron emission tomography using Cerenkov luminescence in bismuth germanate
使用锗酸铋中的切伦科夫发光进行飞行时间正电子发射断层扫描
- 批准号:
10766104 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Preparation of Axially Chiral Molecules with Circularly Polarized Luminescence: Derived from pai-pai Interaction of Heteroaromatic Rings
具有圆偏振发光的轴向手性分子的制备:源自杂芳环的排排相互作用
- 批准号:
23K17922 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of Luminescence Mechanisms in Carbon Dots and Their Application to Photonic-Structured Optoelectronic Devices
碳点发光机制的阐明及其在光子结构光电器件中的应用
- 批准号:
23KJ2166 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows