格子場の理論におけるトポロジカルな構造の研究

格场论中的拓扑结构研究

基本信息

  • 批准号:
    21J13117
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-28 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

格子ゲージ理論は、離散時空で定義されるゲージ理論の非摂動的かつゲージ不変な定式化である。ギンスパーグ・ウィルソン関係式を満たすオーバーラップ・フェルミオンの場合、有限の格子間隔でもカイラル対称性が中心的な役割を果たすアティヤ・シンガー指数定理を定式化することが可能である。しかし、アティヤ・シンガー指数定理を境界のある多様体に拡張したアティヤ・パトディ・シンガー指数定理は、格子ゲージ理論では知られていなかった。これは、格子上で非局所的な境界条件を課すことが困難であること、またそのような境界条件がギンスパーグ・ウィルソン関係式と相入れないためである。連続理論において、質量のあるフェルミオン演算子のエータ不変量を用いた指数定理の再定式化が提案され、カイラル対称性がない場合にも指数が定式化できることが示された。その再定式化によれば、アティヤ・シンガー指数は質量のあるフェルミオン演算子のエータ不変量と等価であり、アティヤ・パトディ・シンガー指数はドメインウォール・フェルミオンのエータ不変量と等価である。我々は、この新しい定式化を用いて、4次元の格子ゲージ理論におけるアティヤ・パトディ・シンガー指数の非摂動的定式化を提案した。この提案を検証するために、古典連続極限において、格子ドメインウォール・フェルミオンのエータ不変量がアティヤ・パトディ・シンガー指数の表式と一致することを摂動的に示した。格子上のドメインウォール・フェルミオンのエータ不変量はその定義から整数であることが保証されているので、格子上のアティヤ・パトディ・シンガー指数は格子ゲージ理論におけるアノマリー流入機構を厳密に記述することが可能であり、格子ドメインウォール・フェルミオンによって格子上でのアノマリー流入機構が厳密に実現していることを確認した。
Lattice theory theory, scattered time-space theory definition, non-action theory, non-action theory, non-action theory and so on. You know, in the center of a finite grid, you know, you know, you know, The boundary of the index theorem, the theory of the lattice theory, the theory of the lattice theory, the theory of the index theorem, the theory of the lattice theory, the theory of the lattice theory. On the grid, the boundary conditions are not the same as those of the bureau. In the link theory, we use the Index Theorem to reformat the proposal, the symmetry, the symmetry, the index, the formula, the index, the operator, the operator, the operator To reformat the index, to perform the operator, and so on. We are interested in the formulation of the system, the lattice theory of the fourth dimension, and the proposal for the non-activity of the index. The proposal is more accurate, the classical link is limited, and the grid is used to determine the volume of information. The index is expressed in the form of a consistent response. On the grid, you know, the whole number, the size, the value, the value, In the grid, the information flows into the organization. The information is displayed. The information is confirmed.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

川井 直樹其他文献

川井 直樹的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

低维超对称场论中指数定理,超对称破缺和反常问题
  • 批准号:
    19075030
  • 批准年份:
    1990
  • 资助金额:
    1.5 万元
  • 项目类别:
    面上项目

相似海外基金

ドメインウォールフェルミオンで理解する指数定理
使用域壁费米子理解指数定理
  • 批准号:
    23K22490
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Index theorem relevant to the invariants of diffeomorphism groups
与微分同胚群不变量相关的指数定理
  • 批准号:
    20K03580
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Index theorem of infinite-dimensional manifolds and noncommutative geometry
无限维流形指数定理和非交换几何
  • 批准号:
    18J00019
  • 财政年份:
    2018
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The index theorem involved with foliation and diffeomorphism groups
涉及叶状群和微分同胚群的指数定理
  • 批准号:
    17K05247
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
代数解析的手法による指数定理の研究
利用代数分析方法研究指标定理
  • 批准号:
    15J07993
  • 财政年份:
    2015
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
指数定理と余随伴軌道に関する研究
指数定理与共交轨道研究
  • 批准号:
    14J08233
  • 财政年份:
    2014
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
スペクトル流の一般化と指数定理
谱流和指数定理的推广
  • 批准号:
    14J07081
  • 财政年份:
    2014
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
指数定理を用いたスカラー曲率やその周辺に関する多様体上の解析についての研究
利用指数定理分析流形上标量曲率及其周围环境的研究
  • 批准号:
    13J01329
  • 财政年份:
    2013
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of the index theorem on foliated manifolds
叶流形指数定理的发展
  • 批准号:
    25400085
  • 财政年份:
    2013
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of loop spaces: towards index theorem
循环空间的几何:走向索引定理
  • 批准号:
    22654011
  • 财政年份:
    2010
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了