Preasymptotic error analysis for function recovery problems in high dimensions

高维功能恢复问题的渐进误差分析

基本信息

项目摘要

Many applications in engineering, science, and statistics require inter- or extrapolation from data. Mathematically speaking, the problem is to find a function fitting the data. This research project is concerned with the preasymptotic error analysis of such recoverry problems for high-dimensional data. The functions appearing in the studied recovery problems are subject to two different kinds of model assumptions: on the one hand, the boundedness of mixed derivatives and generalizations thereof, which naturally appear in the context of the electronic Schrödinger equation and sparse grid methods; on the other hand, assumptions of structured dependencies, which are significant in semiparametric statistics and machine learning.The main focus of the research project are preasymptotic bounds for worst-case errors and the design of optimal algorithms given one of the previously mentioned model assumptions. Worst-case error estimates are a central ingredient in the analysis of approximation and function recovery methods. They provide a priori error estimates which are most reliable given correct model assumptions. At the same time, worst-case error estimates give insights into the fundamental limitations of approximation and recovery methods.For the considered problems, asymptotic error estimates are typically known for quite some time. In case of functions defined on high-dimensional domains, however, asymptotic estimates often turn out to be useless. One reason is that they are only valid after investing a number of samples growing exponentially with the dimension. At this point, preasymptotics become crucial to obtain practically relevant error estimates. Preasymptotics are also important to precisely determine the level of tractability of a high-dimensional approximation problem. In particular, preasymptotics allow to decide whether or not the curse of dimensionality is present.The rigorous analysis of preasymptotics in this research project will be based on fundamental concepts and results from approximation theory and functional analysis. The concept particularly worth mentioning is metric entropy. Metric entropy, respectively entropy numbers, is an essential ingredient in the context of Carl's inequality, concentration inequalities for empirical processes, and a new characterization method for worst-case errors of Sobolev embeddings discovered by the applicant and coauthors. All three will be important tools in the proofs of lower and upper bounds for worst-case errors.
在工程、科学和统计学中的许多应用需要从数据中进行内推或外推。从数学上讲,问题是找到一个拟合数据的函数。本研究计画系关于高维资料之复原问题之预渐近误差分析。在所研究的恢复问题中出现的函数受到两种不同类型的模型假设的影响:一方面,混合导数及其推广的有界性,这自然出现在电子薛定谔方程和稀疏网格方法的背景下;另一方面,结构化依赖的假设,在半参数统计和机器学习中具有重要意义。本研究项目的主要重点是最坏估计的预渐近界,案例误差和最优算法的设计给出了前面提到的模型假设之一。最坏情况下的误差估计是近似和函数恢复方法分析的核心内容。他们提供了一个先验的误差估计,这是最可靠的给定正确的模型假设。同时,最坏情况下的误差估计揭示了近似和恢复方法的基本局限性。对于所考虑的问题,渐近误差估计通常在相当长的一段时间内是已知的。然而,在高维域上定义的函数的情况下,渐近估计往往是无用的。一个原因是,它们只有在投资了大量随维度呈指数增长的样本后才有效。在这一点上,预渐近性变得至关重要,以获得实际相关的误差估计。前征兆对于精确确定高维近似问题的易处理性水平也很重要。特别是,预渐近允许决定是否存在维数灾难。在这个研究项目中,预渐近的严格分析将基于近似理论和泛函分析的基本概念和结果。特别值得一提的概念是度量熵。度量熵,相应地熵数,是卡尔不等式、经验过程的浓度不等式以及由申请人和共同作者发现的索伯列夫嵌入的最坏情况错误的新表征方法的背景下的重要成分。所有这三个将是重要的工具,在证明下限和上限的最坏情况下的错误。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How anisotropic mixed smoothness affects the decay of singular numbers of Sobolev embeddings
  • DOI:
    10.1016/j.jco.2020.101523
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Kuehn;W. Sickel;T. Ullrich
  • 通讯作者:
    T. Kuehn;W. Sickel;T. Ullrich
Monte Carlo methods for uniform approximation on periodic Sobolev spaces with mixed smoothness
  • DOI:
    10.1016/j.jco.2017.12.002
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Byrenheid;R. Kunsch;V. K. Nguyen
  • 通讯作者:
    G. Byrenheid;R. Kunsch;V. K. Nguyen
The recovery of ridge functions on the hypercube suffers from the curse of dimensionality
超立方体上岭函数的恢复遭受维数灾难
  • DOI:
    10.1016/j.jco.2020.101521
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Doerr;S. Mayer
  • 通讯作者:
    S. Mayer
A New Upper Bound for Sampling Numbers
抽样数量的新上限
Entropy Numbers of Finite Dimensional Mixed-Norm Balls and Function Space Embeddings with Small Mixed Smoothness
  • DOI:
    10.1007/s00365-020-09510-5
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sebastian Mayer;T. Ullrich
  • 通讯作者:
    Sebastian Mayer;T. Ullrich
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Tino Ullrich其他文献

Professor Dr. Tino Ullrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Tino Ullrich', 18)}}的其他基金

Efficient Models for Multivariate Functions and High-Dimensional Approximation
多元函数和高维逼近的有效模型
  • 批准号:
    210193402
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Reduction of sampling and data complexity by modern sparsification techniques
通过现代稀疏化技术降低采样和数据复杂性
  • 批准号:
    533875539
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划
伪随机序列的设计与分析
  • 批准号:
    60802029
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
随机系统的递推辨识和优化
  • 批准号:
    60474004
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
支持IP网视频传输的应用层多时间尺度QoS控制
  • 批准号:
    60372019
  • 批准年份:
    2003
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似海外基金

A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
  • 批准号:
    10760409
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Assessing Zika virus infection during pregnancy and adverse fetal, infant, and child outcomes: The Zika virus (ZIKV) Individual Participant Data (IPD) Meta-analyses (MA) Phase II and the analysis of surveillance-based IPD data. (ZIKV-IPD-MA-2S)
评估怀孕期间的寨卡病毒感染和不良胎儿、婴儿和儿童结局:寨卡病毒 (ZIKV) 个体参与者数据 (IPD) 荟萃分析 (MA) II 期和基于监测的 IPD 数据分析。
  • 批准号:
    495081
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Tecan Resolvex for University of Utah
犹他大学 Tecan Resolvex
  • 批准号:
    10734678
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
  • 批准号:
    10698374
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A novel instrument for continuous blood pressure monitoring
一种新型连续血压监测仪器
  • 批准号:
    10696510
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Advanced signal processing methods for neural data analysis to support development of brain dynamic biomarkers for research and clinical applications in patients with Alzheimer's and related dementias
用于神经数据分析的先进信号处理方法,支持开发大脑动态生物标志物,用于阿尔茨海默氏症和相关痴呆症患者的研究和临床应用
  • 批准号:
    10739673
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards new classes of conic optimization problems
迈向新类别的二次曲线优化问题
  • 批准号:
    23K16844
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mount Sinai HHEAR Network Targeted Lab Hub
西奈山 HHEAR 网络目标实验室中心
  • 批准号:
    10875017
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了