Computational homogenization of inelastic conventional and gradient-extended microstructures by a shear band approach
通过剪切带方法对非弹性常规和梯度延伸微结构进行计算均质化
基本信息
- 批准号:310713160
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is dedicated to a numerically efficient approach for the computation of the average stress response of periodic microstructures. The method exploits the fact that many heterogeneous microstructures with and without gradient effects mainly deform by the formation of shear bands. By introducing a small number of degrees of freedom on these bands, a computationally very cheap model is obtained being surprisingly accurate for a wide range of microstructures. Thus, the approach allows for efficient two-scale simulations, where a microstructural model is attached to each integration point of a macroscopic finite element model. In contrast to the classical FE²-method, the microscopic model has significantly less degrees of freedom. This makes the fast two-scale simulation of very complex macroscopic structures possible. The microscopic strains of the model are piecewise constant. Thus, the number of stress computations within the microstructure is significantly smaller than in many other order reduction methods being, e.g., based on the proper orthogonal decomposition (POD). As a result, the performance of the method may in certain situations be superior to these latter approaches. As another advantage, the implementation of the method is rather simple and does not require the input of certain data objects like the finite element stiffness matrix or the residual vector, which are needed for the POD but are not always easy to access in finite element programs. Since size effects play a significant role in many microstructures, a concept for the model extension to gradient plasticity is developed.
该建议致力于一个数值有效的方法计算周期性微结构的平均应力响应。该方法利用了这样一个事实,即许多不均匀的微观结构,有和没有梯度效应主要变形的剪切带的形成。通过在这些带上引入少量的自由度,获得了计算上非常便宜的模型,对于广泛的微结构具有令人惊讶的准确性。因此,该方法允许有效的双尺度模拟,其中微观结构模型连接到宏观有限元模型的每个积分点。与经典的FE²方法相比,微观模型的自由度要小得多。这使得非常复杂的宏观结构的快速双尺度模拟成为可能。该模型的微观应变是分段常数。因此,微结构内的应力计算的数量显著小于许多其他降阶方法,例如,本征正交分解(POD)因此,在某些情况下,该方法的性能可能上级这些后者的方法。作为另一个优点,该方法的实现相当简单,并且不需要输入某些数据对象,如有限元刚度矩阵或残差向量,这些数据对象是POD所需的,但在有限元程序中并不总是容易访问。由于尺寸效应在许多微观结构中起着重要的作用,因此提出了将模型扩展到梯度塑性的概念。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An efficient reduced computational method for nonlinear homogenization problems: the Hashin–Shtrikman type Finite Element method (HSFE)
非线性均质化问题的高效简化计算方法:HashinâShtrikman 型有限元方法 (HSFE)
- DOI:10.1002/pamm.201800146
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:F. Cavaliere;S. Wulfinghoff;S.Reese
- 通讯作者:S.Reese
A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory
- DOI:10.1098/rspa.2019.0581
- 发表时间:2020-03-25
- 期刊:
- 影响因子:3.5
- 作者:Alipour, Atefeh;Reese, Stefanie;Wulfinghoff, Stephan
- 通讯作者:Wulfinghoff, Stephan
Model order reduction of nonlinear homogenization problems using a Hashin–Shtrikman type finite element method
- DOI:10.1016/j.cma.2017.10.019
- 发表时间:2018-03
- 期刊:
- 影响因子:7.2
- 作者:S. Wulfinghoff;F. Cavaliere;S. Reese
- 通讯作者:S. Wulfinghoff;F. Cavaliere;S. Reese
Efficient two–scale simulations of engineering structures using the Hashin–Shtrikman type finite element method
- DOI:10.1007/s00466-019-01758-4
- 发表时间:2019-08
- 期刊:
- 影响因子:4.1
- 作者:Fabiola Cavaliere;S. Reese;S. Wulfinghoff
- 通讯作者:Fabiola Cavaliere;S. Reese;S. Wulfinghoff
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Stephan Wulfinghoff其他文献
Professor Dr.-Ing. Stephan Wulfinghoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热力耦合方程组的并行多尺度算法
- 批准号:11301329
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Monge-Ampere型方程及其几何应用
- 批准号:11001261
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
复相催化“均相化”催化剂的制备及其性能研究
- 批准号:20573095
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
- 批准号:
EP/W022923/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Development of multi-scale topology optimization method considering nonlinear magnetic property
考虑非线性磁特性的多尺度拓扑优化方法的发展
- 批准号:
23K13241 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
地下構造モニタリングを目指した、地震波による新たな時空間イメージング手法の開発
开发利用地震波进行地下结构监测的新型时空成像方法
- 批准号:
22KJ2397 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
- 批准号:
22K14142 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A spatiotemporal data-driven homogenization approach for hierarchical modeling of multiphase frozen soil in permafrost
时空数据驱动的多年冻土多相冻土分层建模方法
- 批准号:
RGPIN-2019-06471 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
- 批准号:
2153585 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Homogenization in Anomalous Diffusion Phenomena and its Applications to Inverse Problems
反常扩散现象的均匀化及其在反问题中的应用
- 批准号:
21K20333 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up