Optimizing Variational Inequalities on Shape Manifolds
优化形状流形上的变分不等式
基本信息
- 批准号:314066674
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shape optimization is of importance in many fields of applications similarly to variational inequalities. However, shape optimization problems with constraints consisting of variational inequalities have not yet been considered much in the existing literature. This proposal aims at a novel approach to shape optimization problems in terms of shape manifolds and the resulting framework from infinite dimensional Riemannian geometry, which has been developed recently by the applicant. This approach enables a theoretical connection of shape optimization with optimal control problems in vector bundles, which will be the guiding principle for the analytical and numerical investigations within this project. Thus, the goals of this project are investigations in the area of shape optimization for variational inequalities regarding appropriate Riemannian shape manifold formulations, existence and well-posedness of solutions, semi-smoth Newton methods on shape vector bundles, mesh independent algorithmic approaches, robust treatment of uncertanties and solution approaches to application problems from the field of (thermo-)mechanics. Besides that, the shape manifold approach together with its novel shape metrics enhancing discretization and algorithmic robustness provides a basis for cooperation with other projects addressing shape based problem formulations.
形状优化在许多应用领域中与变分不等式类似具有重要意义。然而,形状优化问题的约束条件组成的变分不等式尚未考虑在现有的文献。该建议旨在一种新的方法,形状优化问题的形状流形和所产生的框架,从无限维黎曼几何,这是最近开发的申请人。这种方法使形状优化与矢量束中的最优控制问题的理论联系成为可能,这将是本项目中分析和数值研究的指导原则。因此,该项目的目标是在变分不等式的形状优化领域的调查,关于适当的黎曼形状流形配方,解的存在性和适定性,形状向量束的半光滑牛顿方法,网格独立的算法方法,不确定性的鲁棒处理和(热)力学领域应用问题的解决方案。除此之外,形状流形方法及其新颖的形状度量,增强了离散化和算法的鲁棒性,为与其他解决基于形状的问题公式的项目合作提供了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Volker Schulz其他文献
Professor Dr. Volker Schulz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Volker Schulz', 18)}}的其他基金
Semi-Smooth Newton Methods on Shape Spaces
形状空间上的半光滑牛顿法
- 批准号:
423771068 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Shape Optimization for Mitigating Coastal Erosion
减轻海岸侵蚀的形状优化
- 批准号:
423760857 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
允许加权经典不等式的无限阶退化和爆炸的新改进及其在变分问题中的应用
- 批准号:
20K03670 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Variational problems associated with best constants of functional inequalities in a limiting case
极限情况下与函数不等式最佳常数相关的变分问题
- 批准号:
19K14568 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual