離散曲面に対する正則表現公式とその連続極限の解析

离散曲面正则表达式公式及其连续极限分析

基本信息

项目摘要

今年度は主に以下の成果を得た.[1] 3次元ミンコフスキー空間内の離散時間的平均曲率一定曲面の理論を構築するための準備として,Joseph Cho氏(ウィーン工科大学)と共同で,3次元ミンコフスキー空間内の時間的平均曲率一定曲面に関する研究を行った.離散時間的等温曲面の場合に対する定式化については一定の成果が得られたため,離散時間的反等温曲面の場合にはどのように定式化するかが今後の課題となる.[2] 赤嶺新太郎氏(日本大学),Joseph Cho氏(ウィーン工科大学),Wayne Rossman氏(神戸大学),Seong-Deog Yang氏(高麗大学校)と共同で,3次元ミンコフスキー空間内の離散平均曲率零曲面の実解析的延長問題についての研究を行った.離散曲面に対して直接この問題を考えることは困難だが,対応する離散正則関数,離散パラ正則関数の性質に着目すればこのような問題を考えることが出来ることが分かった.収束性に関する議論は今後の課題であるが,離散曲面の収束性に関する新たな知見が得られたことは大変意義深い.[3] 昨年度からの継続課題として,離散極小曲面にダルブー変換を施すことによって得られる離散極小曲面の漸近的振る舞いに関する研究を進めた.離散極小曲面が平面エンド,カテノイドエンドを持つための条件を現在も検証中である.これらに加えて,2022年11月,2023年3月にそれぞれ第13回日本数学会季期研究所「微分幾何と可積分系」の第2弾,第3弾企画をはじめとした数件の国際研究集会を対面オンラインの併用で開催し,本研究課題に係る最新の研究の情報収集や普及に努めた.
This year's main achievements. [1]Joseph Cho (University of Engineering) has been working together on the theoretical construction of a constant surface of mean curvature in discrete time in three-dimensional space. In the case of isothermal surfaces in discrete time, the problem of inverse isothermal surfaces in discrete time is solved. [2]Akira Shintaro (Nihon University), Joseph Cho (Nihon University of Technology), Wayne Rossman (Kobe University), Seong-Deog Yang (Korea University School) and Jointly, Research on the Extension Problem of Discrete Mean Curvature Zero Surface in 3D Space. The discrete surface is the direct relation of the problem, the discrete regular relation of the problem, the discrete regular relation of the problem. The new knowledge about the convergence of discrete surfaces is of great significance. [3]The research on asymptotic oscillation of discrete minimal surfaces has been carried out in recent years. Discrete minimal surfaces are planar surfaces, and the conditions for the existence of discrete minimal surfaces are discussed. November, 2022, March, 2023: The 13th Japan Mathematical Society Quarterly Research Institute "Differential Geometry and Integral Systems" and the 2nd and 3rd International Research Conferences are planned to be held in parallel. This research project is the latest research information collection and popularization effort.

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The 4th International Workshop "Geometry of Submanifolds and Integrable Systems"
第四届国际研讨会“子流形与可积系统的几何”
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
TU Wien(オーストリア)
维也纳工业大学(奥地利)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Constructions of discrete surfaces via integrable systems approach: Part II
通过可积系统方法构造离散表面:第二部分
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤謙太;工藤 桃成;杉山真吾;Masashi Yasumoto
  • 通讯作者:
    Masashi Yasumoto
Construction and deformation of discrete surfaces via integrable transformations (ポスター)
通过可积变换构造和变形离散表面(海报)
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    杉山真吾;横山俊一;M. Sera;坂田繁洋;Masashi Yasumoto
  • 通讯作者:
    Masashi Yasumoto
The 1st FukKO Lectures on Geometry on Discrete Constraint Willmore Surfaces
第一届 FukKO 离散约束 Willmore 曲面几何讲座
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

安本 真士其他文献

安本 真士的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('安本 真士', 18)}}的其他基金

多角的なアプローチを用いた曲面の離散微分幾何学の研究
多方面方法研究曲面离散微分几何
  • 批准号:
    19J02034
  • 财政年份:
    2019
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
定曲率空間内の離散化された平均曲率一定曲面の構成
常曲率空间中常平均曲率离散曲面的构造
  • 批准号:
    14J03154
  • 财政年份:
    2014
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

超弦理論からの可積分系の大統一理論の構成
从弦理论构建可积系统大统一理论
  • 批准号:
    23K25865
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
対称関数の代数的組合せ論とその表現論,組合せ論,可積分系への応用
对称函数的代数组合及其在表示论、组合学和可积系统中的应用
  • 批准号:
    24K06646
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非エルミート可積分系の数理物理学:普遍構造の解明と非平衡物理学への応用
非厄米可积系统的数学物理:普适结构的阐明及其在非平衡物理中的应用
  • 批准号:
    24K16976
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
可積分系に関連する組合せ論
与可积系统相关的组合学
  • 批准号:
    23KJ0795
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
クラスター代数による離散可積分系の研究とモジュラー関数への応用
使用簇代数研究离散可积系统及其在模函数中的应用
  • 批准号:
    22KJ0455
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
次数付きリー代数の表現論に基づく可積分系の研究
基于有序李代数表示论的可积系统研究
  • 批准号:
    23K03217
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
表現論および可積分系とMacdonald-Koornwinder多項式
表示论、可积系统和 Macdonald-Koornwinder 多项式
  • 批准号:
    22KJ1550
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
量子可積分系における保存量の具体的な表式を用いた一般化ギブス分布の構築
使用量子可积系统中守恒量的特定表达式构造广义吉布斯分布
  • 批准号:
    22KJ0551
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
擬シンプレクティック-Nijenhuis構造と可積分系の関連について
论赝辛-Nijenhuis结构与可积系统的关系
  • 批准号:
    23K12977
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
クラスター代数の組合せ的表現論および可積分系への応用
簇代数的组合表示理论及其在可积系统中的应用
  • 批准号:
    23K03048
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了