Correlated topological insulators: spectroscopic investigations combined with band structure calculations.
相关拓扑绝缘体:光谱研究与能带结构计算相结合。
基本信息
- 批准号:324108392
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topological insulators form a novel state of matter providing new opportunities for novel quantum phenomena as well as original spintronics applications. Topological insulators have an insulating bulk and due to topological considerations necessarily a metallic surface with surface charge carriers that are protected against backscattering by time reversal symmetry. So far only semiconductors were considered to exhibit this behavior but recent theoretical studies predict that also strongly correlated systems can show nontrivial topological properties, thereby allowing the emergence of surface phenomena with even more exotic properties. The challenge is now to discover such correlated materials. Theory suggests that Kondo insulators are promising candidates for exhibiting topological nontrivial surface states. Subject of this project is to find out whether Kondo insulators which are known today fulfill the conditions for nontrivial topology. We will achieve this by investigating the bulk with modern x-ray methods and combine it with band structure calculations using the notion that the topological nature of the surface is a bulk property.
拓扑绝缘体形成了一种新的物质状态,为新的量子现象和原始的自旋电子学应用提供了新的机会。拓扑绝缘体具有绝缘体块,并且由于拓扑考虑,必须具有具有表面电荷载流子的金属表面,所述表面电荷载流子通过时间反转对称性被保护免受背散射。到目前为止,只有半导体被认为表现出这种行为,但最近的理论研究预测,强关联系统也可以表现出非平凡的拓扑性质,从而允许出现具有更奇异性质的表面现象。现在的挑战是发现这种相关材料。理论表明,近藤绝缘体是表现出拓扑非平凡表面态的有希望的候选者。本计画的主题是要找出目前已知的近藤绝缘子是否满足非平凡拓扑的条件。我们将实现这一点,通过调查与现代X射线方法的散装和联合收割机它与带结构计算使用的概念,即拓扑性质的表面是一个散装财产。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
4f Crystal Field Ground State of the Strongly Correlated Topological Insulator SmB_{6}.
- DOI:10.1103/physrevlett.120.016402
- 发表时间:2017-06
- 期刊:
- 影响因子:8.6
- 作者:M. Sundermann;Hasan Yavacs;Kai-bao Chen;Dae-Jeong Kim;Z. Fisk;D. Kasinathan;M. Haverkort;P. Thalmeier-P
- 通讯作者:M. Sundermann;Hasan Yavacs;Kai-bao Chen;Dae-Jeong Kim;Z. Fisk;D. Kasinathan;M. Haverkort;P. Thalmeier-P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Andrea Severing其他文献
Dr. Andrea Severing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Andrea Severing', 18)}}的其他基金
Valence and orbital states of rare earth Heavy Fermion compounds close to the quantum critical point: Resonant and non-resonant inelastic X-ray scattering investigations.
接近量子临界点的稀土重费米子化合物的价态和轨道态:共振和非共振非弹性 X 射线散射研究。
- 批准号:
223392744 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Crystal-field investigations in rare earth compounds using linearpolarized soft X-ray absorption spectroscopy.
使用线性偏振软 X 射线吸收光谱对稀土化合物进行晶体场研究。
- 批准号:
190359120 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
From hidden to large-moment-antiferromagnetic order in URu2Si2: an x-ray study of 5f occupation and wave function symmetry.
从 URu2Si2 中的隐藏序到大矩反铁磁序:5f 占据和波函数对称性的 X 射线研究。
- 批准号:
387555779 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Orbifold Gromov-Witten理论研究
- 批准号:11171174
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Topological insulators and free fermions: from Hermitian to non-Hermitian
拓扑绝缘体和自由费米子:从厄米特到非厄米特
- 批准号:
DP240100838 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Mathematical study of topologies for higher-order topological insulators
高阶拓扑绝缘体拓扑的数学研究
- 批准号:
23K12966 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
GCR: Rational Design of Topological Insulators using Atomically-Precise DNA Self-Assembly
GCR:利用原子精确的 DNA 自组装技术合理设计拓扑绝缘体
- 批准号:
2317843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Evaluation and application of charge to spin conversion in topological crystalline insulators
拓扑晶体绝缘体中电荷自旋转换的评价及应用
- 批准号:
22KJ1719 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Paired Radical States in Molecular Wires: 1D Topological Insulators and Beyond
分子线中的成对自由基态:一维拓扑绝缘体及其他
- 批准号:
2241180 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Interfacial quantum transport phenomena in heterostructures of topological insulators
拓扑绝缘体异质结构中的界面量子输运现象
- 批准号:
22KJ0902 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
- 批准号:
2219610 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Relationship between crystal shapes and bound states/charges at the boundaries of topological insulators
晶体形状与拓扑绝缘体边界处的束缚态/电荷之间的关系
- 批准号:
22K18687 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Topological Photonic Insulators in Silicon Nanophotonics
硅纳米光子学中的拓扑光子绝缘体
- 批准号:
558491-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral