非線形放物型偏微分方程式における定常構造および自己相似性と解の挙動
非线性抛物型偏微分方程中的平稳结构、自相似性和解行为
基本信息
- 批准号:20K03685
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2020
- 资助国家:日本
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本研究では、非線形放物型方程式に対して、解の挙動と定常問題の解構造および自己相似性との関連性について考察を行う。とくに Sobolev 優臨界および Sobolev 臨界の場合において、特異定常解および自己相似解の構造を明らかにするとともに放物型方程式の解の振る舞いに及ぼす影響を考察する。今年度は,一般の優 Sobolev 臨界の非線形項を持つ楕円型方程式における特異解の存在、一意性、漸近的性質について考察を行った。とくに非線形項の具体形を仮定せず、べき乗型や指数型を含む広範な非線形楕円型方程式を考えた。リーディングタームがべき乗関数とは限らない非線形項やTrudinger-Moser 型不等式に現れる非線形項を始めとする優指数関数を扱うために,藤嶋ー猪奥による条件を用いて考察を行った。この仮定の下、球対称な特異解は一意に存在すること,さらにその一意特異解は正則な解の無限極限として与えられることを示すとともに,特異解の原点近傍における漸近挙動を明らかにすることができた。さらに,優指数関数を非線形項に持つ問題に対しては,特異解の詳細な漸近挙動を導くことができた。証明においては,Pohozaev 型恒等式および先験的評価を利用することにより、正則解の極限として特異解が得られること、さらに解の増大オーダーを限定することなく解の存在・一意性を示すことができた。これらの結果の応用として非線形楕円型偏微分方程式に対する分岐問題に対して特異解が存在する分岐パラメータは一意であること、解のもつパラメータを無限大にすると特異解に収束することを示すことができた。
In this study, we investigate the relationship between nonlinear and nonlinear equations, the dynamics of solutions, the structure of solutions for steady state problems, and their similarities and correlations. In the case of Sobolev optimality and Sobolev criticality, the structure of special steady-state solutions and self-similar solutions is investigated. This year, the existence, uniformity and asymptotic properties of a particular solution of a general optimal Sobolev critical nonlinear term are investigated. The concrete shape of the nonlinear term is determined, and the exponential type is included in the nonlinear equation. The number of non-linear terms in Trudinger-Moser type inequalities is the number of non-linear terms in which the optimal exponent is the number of non-linear terms. The existence of a singular solution for a given sphere and a singular solution for an infinite limit of a regular solution is discussed in detail below. In addition, the optimal exponential relation is a non-linear term, and the specific solution is a detailed asymptotic one. It is proved that Pohozaev type identity and the evaluation of the prior art can be used to obtain the limit of the canonical solution and the increase of the solution. The result is that the nonlinear differential equation has a bifurcation problem, and the solution has a bifurcation problem.
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence and uniqueness of singular solutions for supercritical semilinear elliptic equations
超临界半线性椭圆方程奇异解的存在唯一性
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:内藤雄基;宮本安人
- 通讯作者:宮本安人
Blow-up criteria for the classical Keller-Segel model of chemotaxis in higher dimensions
高维经典 Keller-Segel 趋化模型的放大标准
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:生駒 典久;宮本 安人;宮本安人;Yasuhito Miyamoto;Y. Naito;内藤雄基;内藤雄基;宮本安人;宮本安人;宮本安人,内藤雄基;内藤雄基
- 通讯作者:内藤雄基
Singular solutions for semilinear elliptic equations with general supercritical growth
一般超临界增长半线性椭圆方程的奇异解
- DOI:10.1007/s10231-022-01244-4
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Miyamoto Yasuhito;Naito Yuki
- 通讯作者:Naito Yuki
Properties of solutions to semilinear elliptic problem with Hardy potential
- DOI:10.1016/j.jde.2020.01.009
- 发表时间:2020-07
- 期刊:
- 影响因子:2.4
- 作者:J. Chern;Masato Hashizume;Gyeongha Hwang
- 通讯作者:J. Chern;Masato Hashizume;Gyeongha Hwang
Maximization problem on Trudinger-Moser inequality involving Lebesgue norm
涉及勒贝格范数的 Trudinger-Moser 不等式最大化问题
- DOI:10.1016/j.jfa.2020.108513
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Chern Jann-Long;Hashizume Masato;Hwang Gyeongha;Hashizume Masato
- 通讯作者:Hashizume Masato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
内藤 雄基其他文献
Recent results on splitting and almost disjointness
关于分裂和几乎不相交的最新结果
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Joerg Brendle;Diana Montoya;Yoshihiro Ueda;Joerg Brendle;Yoshihiro Ueda;Joerg Brendle;Yoshihiro Ueda;Joerg Brendle;Yoshihiro Ueda;Joerg Brendle;上田好寛;Joerg Brendle;Joerg Brendle;内藤雄基;上田好寛;Joerg Brendle;Yoshihiro Ueda;Joerg Brendle;Yoshihiro Ueda;Katsuyuki Ishii;Joerg Brendle;Katsuyuki Ishii;Joerg Brendle;Joerg Brendle;内藤 雄基;Yuki Naito;Joerg Brendle;上田 好寛;Joerg Brendle - 通讯作者:
Joerg Brendle
Three positive solutions of the generalized Henon equation
广义Henon方程的三个正解
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Y-C Kwun;S. Nakagiri;Y-G. Lee;J-S. Hwang;J-H. Park;S. Nakagiri;R. Kajikiya;K. Ishii;Shin-ichi Nakagiri;K. Ishii;R. Kajikiya;Shin-ichi Nakagiri;Yuki Naito;Shin-ichi Nakagiri;内藤 雄基;中桐 信一;Yuki Naito;中桐 信一;石井 克幸;中桐信一;石井 克幸;Katsuyuki Ishii;中桐信一;Katsuyuki Ishii;梶木屋 龍治;梶木屋 龍治 - 通讯作者:
梶木屋 龍治
移流拡散方程式の逆問題
对流扩散方程反问题
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J-H Ha;S. Nakagiri;S-J. Lee;Yuki Naito;中桐 信一;中桐 信一;内藤 雄基;S. Nakagiri;Yuki Naito;S. Nakagiri;R. Kajikiya;中桐 信一;中桐信一 - 通讯作者:
中桐信一
一般化されたエノン方程式の非球対称解
广义 Henon 方程的非球对称解
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J-H Ha;S. Nakagiri;S-J. Lee;Yuki Naito;中桐 信一;中桐 信一;内藤 雄基;S. Nakagiri;Yuki Naito;S. Nakagiri;R. Kajikiya;中桐 信一;中桐信一;R. Kajikiya - 通讯作者:
R. Kajikiya
エノン方程式の非球対称解の存在について
关于Henon方程非球对称解的存在性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J-H Ha;S. Nakagiri;S-J. Lee;Yuki Naito;中桐 信一;中桐 信一;内藤 雄基;S. Nakagiri;Yuki Naito;S. Nakagiri;R. Kajikiya;中桐 信一;中桐信一;R. Kajikiya;R. Kajikiya - 通讯作者:
R. Kajikiya
内藤 雄基的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('内藤 雄基', 18)}}的其他基金
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
放物型非線形問題における自己相似性と解構造
抛物型非线性问题的自相似性和解结构
- 批准号:
14740116 - 财政年份:2002
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
非線形放物型偏微分方程式の自己相似解
非线性抛物型偏微分方程的自相似解
- 批准号:
10740086 - 财政年份:1998
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非線形楕円型偏微分方程式に対する定性的理論
非线性椭圆偏微分方程的定性理论
- 批准号:
07740109 - 财政年份:1995
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非線形楕円型偏微分方程式の定性的研究
非线性椭圆偏微分方程的定性研究
- 批准号:
06740122 - 财政年份:1994
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
ARC Future Fellowships
凝集系の視点による非線形楕円型偏微分方程式の解の解析
从聚集系统的角度分析非线性椭圆偏微分方程的解
- 批准号:
24K06794 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
半線形楕円型偏微分方程式における安定解の正則性問題の解明
求解半线性椭圆偏微分方程稳定解的正则性问题
- 批准号:
23KJ0949 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
- 批准号:
2309551 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2042384 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2203014 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant














{{item.name}}会员




