Ladders of recollements of triangulated and of abelian categories
三角化范畴和阿贝尔范畴回忆的阶梯
基本信息
- 批准号:340487543
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is about recollements of triangulated and of abelian categories. Triangulated recollements have been introduced by Beilinson, Bernstein and Deligne to deconstruct triangulated categories into open and closed parts, related for instance by Grothendieck's six functors; recollements can be seen as short exact sequences of three triangulated (such as derived) categories, hence also as a far reaching generalisation of the connections between two algebras provided by derived equivalences . Ladders of triangulated categories are recollements extended by further adjoints; these have been introduced by Beilinson, Ginzburg and Schechtman as a setup for Koszul duality. Recollements of abelian categories have been introduced, too, but ladders of abelian categories need to be defined rather differently; this is to be done in this project. The project then aims at connecting and combining triangulated and abelian techniques, at further developing the method of ladders and at a variety of intrinsically related applications.The intended applications include- to characterise, describe and construct algebras frequently arising in algebraic Lie theory (such as quasi-hereditary algebras) as well as important representations (such as characteristic tilting modules);- to relate ladders with Serre functors and to use them to construct such functors;- to fully describe recollements of self-injective (eg symmetric or Frobenius) algebras and to use this description to classify self-injective (or Frobenius or symmetric) cellularly stratified diagram algebras (such as Brauer, BMW or partition algebras);- to relate being Gorenstein and validity of the (Fg) condition for algebras in a recollement and to describe support varieties of modules or complexes under the functors in a recollement.
这项提议是关于三角分类和阿贝尔分类的重新归集。Beilinson,Bernstein和Deligne已经引入了三角重集,将三角范畴解构为开放和闭合部分,例如通过Grothendieck的六个函子相关;重集可以被视为三个三角(如派生)范畴的短精确序列,因此也是由派生等价提供的两个代数之间联系的深远推广。三角范畴的阶梯是由更多的伴随项扩展的重合;Beilinson,Ginzburg和Scheck htman已经引入这些阶梯作为Koszul对偶的设置。阿贝尔类别的回收也被引入,但阿贝尔类别的阶梯需要有相当不同的定义;这将在本项目中完成。该项目的目标是连接和结合三角化和阿贝尔技术,进一步发展阶梯方法和各种本质上相关的应用。预期的应用包括-刻画、描述和构造在代数李论中经常出现的代数(如准遗传代数)以及重要的表示(如特征倾斜模);-将梯子与Serre函子联系起来并使用它们来构造这样的函子;-完全描述自内射(如对称或Frobenius)代数的回忆,并使用这种描述对自内射(或Frobenius或对称)胞元分层图代数(如Brauer、BMW或划分代数)进行分类;-联系在一个集合中代数的(FG)条件的有效性和成为Gorenstein,并描述在一个集合中函子下的模或复形的支撑簇。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gorenstein Homological Aspects of Monomorphism Categories via Morita Rings
- DOI:10.1007/s10468-016-9652-1
- 发表时间:2016-11
- 期刊:
- 影响因子:0.6
- 作者:Nan Gao;Chrysostomos Psaroudakis
- 通讯作者:Nan Gao;Chrysostomos Psaroudakis
Realisation functors in tilting theory
- DOI:10.1007/s00209-017-1923-y
- 发表时间:2015-11
- 期刊:
- 影响因子:0.8
- 作者:Chrysostomos Psaroudakis;J. Vitória
- 通讯作者:Chrysostomos Psaroudakis;J. Vitória
Change of rings and singularity categories
- DOI:10.1016/j.aim.2019.04.029
- 发表时间:2018-01
- 期刊:
- 影响因子:1.7
- 作者:Steffen Oppermann;Chrysostomos Psaroudakis;Torkil Stai
- 通讯作者:Steffen Oppermann;Chrysostomos Psaroudakis;Torkil Stai
Derived invariance of support varieties
- DOI:10.1090/proc/13302
- 发表时间:2015-02
- 期刊:
- 影响因子:1
- 作者:Julian Kulshammer;Chrysostomos Psaroudakis;Oystein Skartsaeterhagen
- 通讯作者:Julian Kulshammer;Chrysostomos Psaroudakis;Oystein Skartsaeterhagen
A representation-theoretic approach to recollements of abelian categories
- DOI:10.1090/conm/716/14427
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chrysostomos Psaroudakis
- 通讯作者:Chrysostomos Psaroudakis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Steffen Koenig其他文献
Professor Dr. Steffen Koenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Steffen Koenig', 18)}}的其他基金
Gendo-symmetric algebras, comultiplications and homological properties
母对称代数、共乘和同调性质
- 批准号:
320590662 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Standard objects, filtered categories and representations of boxes
标准对象、过滤类别和框表示
- 批准号:
282852568 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Infinite dimensional cellular and quasi-hereditary structures, and applications to KLR algebras
无限维细胞和准遗传结构以及在 KLR 代数中的应用
- 批准号:
273426128 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Recollements and stratifications of derived module categories
派生模块类别的重新整理和分层
- 批准号:
219394222 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
Homological structures at the interface of abstract representation theory and algebraic Lie theory
抽象表示论与代数李理论接口处的同调结构
- 批准号:
125747198 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Die Kostruktur nichtkommutativer Hallalgebren
非交换霍尔代数的构造
- 批准号:
28463305 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
微分分次范畴的模型结构、recollements 和同伦范畴的紧性
- 批准号:11901463
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
微分分次范畴的同调维数、recollements和Morita理论
- 批准号:11761060
- 批准年份:2017
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
正合结构与Recollements
- 批准号:11701455
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Recollements和Gorenstein导出范畴
- 批准号:11101259
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Recollements and stratifications of derived module categories
派生模块类别的重新整理和分层
- 批准号:
219394222 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
Recollements of derived module categories, derived simple algebras, recollements generated by projectives and singularity categories
派生模块类别的重新整理、派生简单代数、射影和奇点类别生成的重新整理
- 批准号:
209809828 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants