Network on silting theory

淤泥理论网络

基本信息

项目摘要

A major success story of representation theory has started with Morita theory, which decides when two algebras have the same category of representations. It continued with tilting theory, which connects two algebras having different representation categories. The derived equivalences resulting from compact tilting complexes are now the centre of a whole new area, which has found plenty of applications in all parts of representation theory and in neighbouring areas. Parallely, non-compact tilting theory has developed on its own, with connections to model theory and logic. New directions of tilting such as cluster tilting and tau-tilting are related with algebraic combinatorics and quantum algebras. Currently, a new area is emerging that extends and unifies these developments in many respects: Silting theory works with abelian and with triangulated categories, incorporates and develops fundamental structures such as torsion theories and t-structures as well as localisations and it employs higher structures. New applications are expected to other quickly emerging areas such as stability structures as well as to classical problems such as the Auslander-Reiten conjecture on stable equivalences and the Telescope conjecture.Almost all published articles in this new area have appeared since 2015, the year when in Verona a first workshop on silting theory was held, with less than fifty participants. A small workshop in China followed in 2018. In 2019 a summer school and conference 'Two weeks of silting' was held in Stuttgart, which attracted already more than a hundred participants.The network being applied for aims at strengthening the existing collaborations in this area, stimulating and supporting new collaborations and providing a basis for exchange within the area and with areas where new methods and applications are to be found.The network's objectives form three pairs of groups:- Two groups of objectives focus on the fundamentals of the theory, t-structures in triangulated categories and torsion pairs in abelian categories, and on the parallels and connections between these two concepts.- The third and the fourth group of objectives aim at strengthening and clarifying the interaction with localisation theories and at extending the whole theory by making available higher categorical structures and enhancements.- The fifth and the sixth group of objectives concentrate on applications to be obtained by building bridges with stability conditions and with stable categories and simple-minded systems.The network has been initiated and is being coordinated by young researchers. It is supported by a few experienced researchers and also by external experts. It will connect three German representation theory groups, in Bielefeld, Bonn and Stuttgart, with groups in the Czech Republic, Italy, Spain and the UK.
表征理论的一个主要成功案例是从Morita理论开始的,该理论决定了两个代数何时具有相同类别的表征。接着是倾斜理论,它连接了两个具有不同表示范畴的代数。由紧凑倾斜复合体产生的衍生等价现在是一个全新领域的中心,它在表示理论的所有部分和邻近领域中都有大量的应用。与此同时,非紧倾斜理论也有了自己的发展,它与模型理论和逻辑有联系。在代数组合学和量子代数的指导下,出现了簇倾斜和tau倾斜等新的倾斜方向。目前,一个新的领域正在出现,它在许多方面扩展和统一了这些发展:泥沙理论与阿贝尔和三角分类一起工作,结合并发展了基本结构,如扭转理论和t结构以及局部化,并采用了更高的结构。新的应用有望在其他快速出现的领域,如稳定结构,以及经典问题,如稳定等价的Auslander-Reiten猜想和望远镜猜想。几乎所有在这个新领域发表的文章都是在2015年之后发表的,那一年维罗纳举行了第一次关于泥沙理论的研讨会,参与者不到50人。随后于2018年在中国举办了一个小型研讨会。2019年,在斯图加特举办了一场名为“两周淤积”的暑期学校和会议,吸引了100多名参与者。正在应用的网络的目的是加强这一领域的现有合作,鼓励和支持新的合作,并为该领域内以及与需要寻找新方法和应用的领域进行交流提供基础。网络的目标形成了三对组:两组目标集中在理论的基础,三角分类中的t结构和阿贝尔分类中的扭转对,以及这两个概念之间的平行和联系。-第三和第四组目标旨在加强和澄清与本地化理论的相互作用,并通过提供更高的分类结构和增强来扩展整个理论。-第五和第六组目标集中于通过建立条件稳定、类别稳定和系统简单的桥梁来实现的应用。这个网络是由年轻的研究人员发起和协调的。它得到了一些经验丰富的研究人员和外部专家的支持。它将连接德国比勒费尔德、波恩和斯图加特的三个代表性理论小组,以及捷克共和国、意大利、西班牙和英国的小组。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Steffen Koenig其他文献

Professor Dr. Steffen Koenig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Steffen Koenig', 18)}}的其他基金

Ladders of recollements of triangulated and of abelian categories
三角化范畴和阿贝尔范畴回忆的阶梯
  • 批准号:
    340487543
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Gendo-symmetric algebras, comultiplications and homological properties
母对称代数、共乘和同调性质
  • 批准号:
    320590662
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Standard objects, filtered categories and representations of boxes
标准对象、过滤类别和框表示
  • 批准号:
    282852568
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Infinite dimensional cellular and quasi-hereditary structures, and applications to KLR algebras
无限维细胞和准遗传结构以及在 KLR 代数中的应用
  • 批准号:
    273426128
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Recollements and stratifications of derived module categories
派生模块类别的重新整理和分层
  • 批准号:
    219394222
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Experiments with cellular structures
细胞结构实验
  • 批准号:
    171349045
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Homological structures at the interface of abstract representation theory and algebraic Lie theory
抽象表示论与代数李理论接口处的同调结构
  • 批准号:
    125747198
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Die Kostruktur nichtkommutativer Hallalgebren
非交换霍尔代数的构造
  • 批准号:
    28463305
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ringel duality revisited
重新审视林格尔对偶性
  • 批准号:
    430932201
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于黏合的silting理论
  • 批准号:
    12001168
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
交换诺特环的导出范畴中的 t-结构与 silting 理论
  • 批准号:
    11971388
  • 批准年份:
    2019
  • 资助金额:
    47.0 万元
  • 项目类别:
    面上项目
Silting理论的若干研究
  • 批准号:
    11801004
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
凝聚环上的三角范畴
  • 批准号:
    11871145
  • 批准年份:
    2018
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
silting理论上的Bongartz引理研究
  • 批准号:
    11701488
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
三角范畴中的 silting 理论
  • 批准号:
    11601433
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Silting theory of Noetherian algebras and subcategories
诺特代数及其子范畴的淤积理论
  • 批准号:
    22KJ2611
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
  • 批准号:
    22H01113
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Capsule Pipeline for Reservoir De-silting and for Mining
SBIR 第一阶段:用于水库清淤和采矿的胶囊管道
  • 批准号:
    2035927
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Cluster theory through derived categories and self-injective algebras
通过派生范畴和自注入代数的聚类理论
  • 批准号:
    18K03238
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tilting complex and Perverse equivalence in Representation theory
表示论中的倾斜复数与反常等价
  • 批准号:
    17F17814
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Measurement System for Fast Thermal Reactions in Solutions
溶液中快速热反应测量系统的开发
  • 批准号:
    11554030
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了