Gendo-symmetric algebras, comultiplications and homological properties

母对称代数、共乘和同调性质

基本信息

项目摘要

Gendo-symmetric algebras are the Morita-Tachikawa correspondents of symmetric algebras. Examples include classical and quantised Schur algebras (with parameters n at least r), blocks of the Bernstein-Gelfand-Gelfand category O of a semisimple complex Lie algebra and Auslander algebras of blocks of cyclic defect of group algebras.In recent joint work with Ming Fang, a comultiplication on gendo-symmetric algebras has been discovered. This comultiplication has been shown to characterise gendo-symmetric algebras and their dominant dimension.The PhD project that is the main part of this proposal aims at investigating this comultiplication and comparing it with known comultiplications on Frobenius algebras and on weak bialgebras. A major aim is to use a comultiplicative analogue of the bar complex to prove Nakayama's conjecture for gendo-symmetric algebras. Another major property of gendo-symmetric algebras is their behaviour under derived equivalences, which is to be taken as a starting point for general results about derived equivalences: Under assumptions to be determined, derived equivalences between gendo-symmetric or more general algebras induce derived equivalences between symmetric centraliser subalgebras, and derived equivalences preserve global or dominant dimension, another unexpected phenomenon. The assumptions needed are expected to be in terms of dominant dimension, which is the key homological ingredient of the whole project.
gendo对称代数是对称代数的森田-立川对应。例子包括经典和量子化Schur代数(参数n至少为r),半简单复李代数的Bernstein-Gelfand-Gelfand范畴O的块,群代数的循环缺陷块的Auslander代数。在最近与方明的合作中,发现了一个关于性对称代数的乘法。这种乘法已被证明是性别对称代数及其主导维数的特征。该博士项目是该提案的主要部分,旨在研究该乘法,并将其与已知的Frobenius代数和弱双代数上的乘法进行比较。一个主要的目的是利用棒状复合体的乘法模拟来证明Nakayama猜想对于geno对称代数。属对称代数的另一个主要性质是它们在派生等价下的行为,这是关于派生等价的一般结果的起点:在待确定的假设下,属对称或更一般代数之间的派生等价导致对称中心化子代数之间的派生等价,派生等价保持全局或主导维数,这是另一个意想不到的现象。所需的假设预计是在主导维度方面,这是整个项目的关键同源成分。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On derived equivalences and homological dimensions
Rigidity dimension of algebras
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Steffen Koenig其他文献

Professor Dr. Steffen Koenig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Steffen Koenig', 18)}}的其他基金

Ladders of recollements of triangulated and of abelian categories
三角化范畴和阿贝尔范畴回忆的阶梯
  • 批准号:
    340487543
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Standard objects, filtered categories and representations of boxes
标准对象、过滤类别和框表示
  • 批准号:
    282852568
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Infinite dimensional cellular and quasi-hereditary structures, and applications to KLR algebras
无限维细胞和准遗传结构以及在 KLR 代数中的应用
  • 批准号:
    273426128
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Recollements and stratifications of derived module categories
派生模块类别的重新整理和分层
  • 批准号:
    219394222
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Experiments with cellular structures
细胞结构实验
  • 批准号:
    171349045
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Homological structures at the interface of abstract representation theory and algebraic Lie theory
抽象表示论与代数李理论接口处的同调结构
  • 批准号:
    125747198
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Die Kostruktur nichtkommutativer Hallalgebren
非交换霍尔代数的构造
  • 批准号:
    28463305
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Network on silting theory
淤泥理论网络
  • 批准号:
    451916042
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Scientific Networks
Ringel duality revisited
重新审视林格尔对偶性
  • 批准号:
    430932201
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
  • 批准号:
    EP/W022834/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053728/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Representation theory of wild cyclotomic quiver Hecke algebras and the symmetric group
狂野分圆箭袋Hecke代数和对称群的表示论
  • 批准号:
    21K03163
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on symmetric functions and enumerative geometry by quantum algebras and integrable models
用量子代数和可积模型研究对称函数和计数几何
  • 批准号:
    21K03176
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the splitting-*-homomorphisms by ordered zero completely positive maps and the heredity of invariant properties of C*-algebras
有序零完全正映射的分裂-*-同态及C*-代数不变性质的遗传性研究
  • 批准号:
    20K03644
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of symmetric groups, wreath products of symmetric groups and related diagram algebras
对称群的表示、对称群的花圈积及相关图代数
  • 批准号:
    2289820
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Symmetric functions and vertex operator algebras
对称函数和顶点算子代数
  • 批准号:
    2279467
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Representation Theory of the Partition Algebras and Symmetric Groups
配分代数和对称群的表示论
  • 批准号:
    2117788
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Non-reductive Lie algebras, their symmetric invariants and interactions with representation theory
非还原李代数、它们的对称不变量以及与表示论的相互作用
  • 批准号:
    404144169
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了