Order zeta functions of number rings and resolution of singularities
数环的阶 zeta 函数和奇点的解析
基本信息
- 批准号:373111162
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims at the study of fundamental arithmetic and analytic invariants of arithmetically motivated zeta functions such as order zeta functions of number rings. The latter are Dirichlet-type generating series enumerating order (subrings with one) of rings of integers in algebraic number fields.In contrast to the classical theory of the related Dedekind zeta function, the fundamental analytic invariants of these functions -- such as their abscissae of convergence, pole orders, special values etc -- are largely unknown. A conjecture attributed to Bhargava has implications on the abscissa of convergence of order zeta functions and hence on the degree of polynomial growth of orders in number rings. Newer papers by Kaplan e.a. yield some estimates for the invariants we mentioned. Explicit formulae for order zeta functions, however, are only known for number fields of degree less than five.The zeta functions studied in the project all have natural Euler product decompositions, whose factors are rational functions. The known formulae for number fields of small degree suggest a number of deep arithmetic regularity, uniformity, and symmetry phenomena. Their detailed study lies at the heart of the proposal.An established method to study the relevant Euler factors and their products interprets the factors as suitable p-adic integrals. A uniform understanding of these integrals therefore holds the key to the understanding both of the global zeta functions and the arithmetic properties of their Euler factors. Resolution of singularities of associated hypersurfaces are a central tool in this enterprise. Whilst Hironaka's celebrated theorem guarantees the existence of such resolutions, the existing algorithms usually soon yield to the complexity and high-dimensionality of the relevant hypersurfaces. A key idea of the proposed project is to use the symmetries and recursive structures occurring in the specific arithmetic context of order zeta functions of number rings in order to design and implement taylor-made resolutions of singularities in this context.The project brings together an experienced researcher and practitioner in the field of resolutions of singularities and an expert in the field of zeta functions of groups and rings. The combination of the two PIs' respective expertise promises significant progress in a field of asymptotic ring theory of high current international relevance.
The project aims at the study of fundamental arithmetic and analytic invariants of arithmetically motivated zeta functions such as order zeta functions of number rings. The latter are Dirichlet-type generating series enumerating order (subrings with one) of rings of integers in algebraic number fields.In contrast to the classical theory of the related Dedekind zeta function, the fundamental analytic invariants of these functions -- such as their abscissae of convergence, pole orders, special values etc -- are largely unknown. A conjecture attributed to Bhargava has implications on the abscissa of convergence of order zeta functions and hence on the degree of polynomial growth of orders in number rings. Newer papers by Kaplan e.a. yield some estimates for the invariants we mentioned. Explicit formulae for order zeta functions, however, are only known for number fields of degree less than five.The zeta functions studied in the project all have natural Euler product decompositions, whose factors are rational functions. The known formulae for number fields of small degree suggest a number of deep arithmetic regularity, uniformity, and symmetry phenomena. Their detailed study lies at the heart of the proposal.An established method to study the relevant Euler factors and their products interprets the factors as suitable p-adic integrals. A uniform understanding of these integrals therefore holds the key to the understanding both of the global zeta functions and the arithmetic properties of their Euler factors. Resolution of singularities of associated hypersurfaces are a central tool in this enterprise. Whilst Hironaka's celebrated theorem guarantees the existence of such resolutions, the existing algorithms usually soon yield to the complexity and high-dimensionality of the relevant hypersurfaces. A key idea of the proposed project is to use the symmetries and recursive structures occurring in the specific arithmetic context of order zeta functions of number rings in order to design and implement taylor-made resolutions of singularities in this context.The project brings together an experienced researcher and practitioner in the field of resolutions of singularities and an expert in the field of zeta functions of groups and rings. The combination of the two PIs' respective expertise promises significant progress in a field of asymptotic ring theory of high current international relevance.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Anne Frühbis-Krüger其他文献
Professorin Dr. Anne Frühbis-Krüger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Anne Frühbis-Krüger', 18)}}的其他基金
Algorithmic methods for arithmetic surfaces and regular, minimal models
算术曲面和常规最小模型的算法方法
- 批准号:
171586250 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Algorithmische Auflösung von Singularitäten
奇点的算法解决
- 批准号:
5430152 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
有限群的概率Zeta函数与群结构研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多元 zeta 值及其变式的研究
- 批准号:24ZR1469000
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
特征为正的多元zeta函数值:Hopf代数结构的研究及其欧拉性相关猜想的证明与应用
- 批准号:12301015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
14-3-3zeta/delta调控牙髓细胞焦亡及牙髓炎症反应的机制研究
- 批准号:CSTB2023NSCQ-BHX0083
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
PCAF在α-地中海贫血胎儿zeta-珠蛋白基因重开放中的作用机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
多重zeta值及其分圆域推广的相关性研究
- 批准号:2023JJ40691
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
有限域上代数簇的有理点与Zeta函数
- 批准号:2022J02046
- 批准年份:2022
- 资助金额:40.0 万元
- 项目类别:省市级项目
Theta函数,Zeta函数,模形式和晶格与涡旋中的数学分析
- 批准号:12261045
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
有关 Apéry 型级数及多重 zeta 值的研究
- 批准号:LY22A010018
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
多重zeta值、多重t-zeta值和多重T-zeta值相关问题的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
- 批准号:
22KJ2747 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research on gauge theory using the graph zeta functions
利用图zeta函数研究规范理论
- 批准号:
23K03423 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical elucidation of hypergeometric functions behind multiple zeta values and multiple zeta algebra based on them.
多zeta值背后的超几何函数以及基于它们的多zeta代数的理论阐明。
- 批准号:
23K03026 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Zeros of zeta functions and L-functions, and their relations to Goldbach's problem
zeta 函数和 L 函数的零点及其与哥德巴赫问题的关系
- 批准号:
22K13895 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Zeta functions associated with discrete systems and its applications
离散系统相关的 Zeta 函数及其应用
- 批准号:
22K03262 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relations between prehomogeneous zeta functions and automorphic forms
前齐次 zeta 函数与自同构形式之间的关系
- 批准号:
22K03251 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Zeta functions in fractal geometry and analysis
分形几何和分析中的 Zeta 函数
- 批准号:
RGPIN-2019-05237 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Zeta Functions and Probability Theory
Zeta 函数和概率论
- 批准号:
RGPIN-2020-03927 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Value-distribution theory of zeta and multiple zeta functions
zeta 和多重 zeta 函数的值分布理论
- 批准号:
22K03267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)